Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (9): 2099-2106.DOI: 10.1016/j.cjche.2019.02.015
Previous Articles Next Articles
Zhiqiang Liu1,2, Yunxiao Lu3, Jiuhui Cheng1,2, Qiang Han1,2, Zunjing Hu3, Linlin Wang1,2
Received:
2018-11-25
Revised:
2019-02-17
Online:
2019-12-04
Published:
2019-09-28
Contact:
Linlin Wang
Supported by:
Zhiqiang Liu1,2, Yunxiao Lu3, Jiuhui Cheng1,2, Qiang Han1,2, Zunjing Hu3, Linlin Wang1,2
通讯作者:
Linlin Wang
基金资助:
Zhiqiang Liu, Yunxiao Lu, Jiuhui Cheng, Qiang Han, Zunjing Hu, Linlin Wang. Geomechanics involved in gas hydrate recovery[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2099-2106.
Zhiqiang Liu, Yunxiao Lu, Jiuhui Cheng, Qiang Han, Zunjing Hu, Linlin Wang. Geomechanics involved in gas hydrate recovery[J]. 中国化学工程学报, 2019, 27(9): 2099-2106.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2019.02.015
[1] I.F. Makogon, I.U.r.F. Makogon, Y.F. Makogon, Hydrates of Hydrocarbons, Pennwell Books, 1997. [2] R. Boswell, T.S. Collett, Current perspectives on gas hydrate resources, Energy Environ. Sci. 4(2011) 1206-1215. [3] D. Archer, Methane hydrate stability and anthropogenic climate change, Biogeosci. Discuss. 4(2007) 993-1057. [4] K.A. Kvenvolden, Methane hydrate-a major reservoir of carbon in the shallow geosphere? Chem. Geol. 71(1988) 41-51. [5] E.D. Sloan Jr., C. Koh, Clathrate Hydrates of Natural Gases, CRC Press, 2007. [6] S.-Y. Lee, G.D. Holder, Methane hydrates potential as a future energy source, Fuel Process. Technol. 71(2001) 181-186. [7] C. Wu, K. Zhao, C. Sun, D.-s. Sun, X.-h. Xu, X.-h. Chen, L. Xuan, Current research in natural gas hydrate production, Geol. Sci. Technol. Inf. 27(2008) 47-52. [8] G.J. Moridis, M.B. Kowalsky, K. Pruess, Depressurization-induced gas production from class-1 hydrate deposits, SPE Reserv. Eval. Eng. 10(2007) 458-481. [9] Q. Yuan, C.-Y. Sun, X. Yang, P.-C. Ma, Z.-W. Ma, B. Liu, Q.-L. Ma, L.-Y. Yang, G.-J. Chen, Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor, Energy 40(2012) 47-58. [10] T.S. Collett, Arctic Gas Hydrate Energy Assessment Studies, The Arctic Energy Summit, Anchorage, Alaska, 200715-18. [11] G. Moridis, M. Reagan, Gas Production from Oceanic Class 2 Hydrate Accumulations, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2007. [12] R.M. Haberer, K. Mangelsdorf, H. Wilkes, B. Horsfield, Occurrence and palaeoenvironmental significance of aromatic hydrocarbon biomarkers in Oligocene sediments from the Mallik 5L-38 Gas Hydrate Production Research Well (Canada), Org. Geochem. 37(2006) 519-538. [13] T. Grover, S.A. Holditch, G. Moridis, Analysis of reservoir performance of Messoyakha gas hydrate field, The Eighteenth International Offshore and Polar Engineering Conference, International Society of Offshore and Polar Engineers, 2008. [14] S. Uchida, A. Klar, K. Yamamoto, Sand production model in gas hydrate-bearing sediments, Int. J. Rock Mech. Min. Sci. 86(2016) 303-316. [15] M. Ota, K. Morohashi, Y. Abe, M. Watanabe, R.L. Smith Jr., H. Inomata, Replacement of CH4 in the hydrate by use of liquid CO2, Energy Convers. Manag. 46(2005) 1680-1691. [16] M. Pooladi-Darvish, H. Hong, Effect of Conductive and Convective Heat Flow on Gas Production from Natural Hydrates by Depressurization, Advances in the Study of Gas Hydrates, Springer, 200443-65. [17] Y. Konno, Y. Jin, K. Shinjou, J. Nagao, Experimental evaluation of the gas recovery factor of methane hydrate in sandy sediment, RSC Adv. 4(2014) 51666-51675. [18] G.C. Fitzgerald, M.J. Castaldi, J.M. Schicks, Methane hydrate formation and thermal based dissociation behavior in silica glass bead porous media, Ind. Eng. Chem. Res. 53(2014) 6840-6854. [19] P. Linga, A. Adeyemo, P. Englezos, Medium-pressure clathrate hydrate/membrane hybrid process for postcombustion capture of carbon dioxide, Environ. Sci. Technol. 42(2007) 315-320. [20] X. Zhou, D. Liang, S. Liang, L. Yi, F. Lin, Recovering CH4 from natural gas hydrates with the injection of CO2-N2 gas mixtures, Energy Fuel 29(2015) 1099-1106. [21] Y. Song, C. Cheng, J. Zhao, Z. Zhu, W. Liu, M. Yang, K. Xue, Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods, Appl. Energy 145(2015) 265-277. [22] S. Falser, S. Uchida, A. Palmer, K. Soga, T. Tan, Increased gas production from hydrates by combining depressurization with heating of the wellbore, Energy Fuel 26(2012) 6259-6267. [23] Z. Liu, L. Wang, B. Zhao, J. Leng, G. Zhang, D. Yang, Heat transfer in sandstones at low temperature, Rock Mech. Rock. Eng. (2018) 1-11. [24] W.F. Waite, L.A. Stern, S. Kirby, W.J. Winters, D. Mason, Simultaneous determination of thermal conductivity, thermal diffusivity and specific heat in sI methane hydrate, Geophys. J. Int. 169(2007) 767-774. [25] S.P. Kang, H. Lee, B.J. Ryu, Enthalpies of dissociation of clathrate hydrates of carbon dioxide, nitrogen, (carbon dioxide + nitrogen), and (carbon dioxide + nitrogen + tetrahydrofuran), J. Chem. Thermodyn. 33(2001) 513-521. [26] M.W. Lee, Well Log Analysis to Assist the Interpretation of 3-D Seismic Data at Milne Point, North Slope of Alaska, US Department of the Interior, US Geological Survey, 2005. [27] V.P. Voronov, E.E. Gorodetskii, S.S. Safonov, Thermodynamic properties of methane hydrate in quartz powder, J. Phys. Chem. B 111(2007) 11486-11496. [28] Z. Zhang, Heat transfer during the dissociation of hydrate in porous media, Procedia Eng. 126(2015) 502-506. [29] W. Waite, B. DeMartin, S. Kirby, J. Pinkston, C. Ruppel, Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand, Geophys. Res. Lett. 29(2002) 821-824. [30] D. Huang, S. Fan, Measuring and modeling thermal conductivity of gas hydratebearing sand, J. Geophys. Res. Solid Earth 110(2005), B01311. [31] E.J. Rosenbaum, N.J. English, J.K. Johnson, D.W. Shaw, R.P. Warzinski, Thermal conductivity of methane hydrate from experiment and molecular simulation, J. Phys. Chem. B 111(2007) 13194-13205. [32] D.D. Cortes, A.I. Martin, T.S. Yun, F.M. Francisca, J.C. Santamarina, C. Ruppel, Thermal conductivity of hydrate-bearing sediments, J. Geophys. Res. Solid Earth 114(2009), B11103. [33] W.F. Waite, L. Gilbert, W.J. Winters, D.H. Mason, Thermal property measurements in Tetrahydrofuran (THF) hydrate and hydrate-bearing sediment between -25 and+4 C, and their application to methane hydrate, Fifth International Conference on Gas Hydrates, Tapir Acad. Trondheim, Norway 2005, pp. 1724-1733. [34] S. Dai, J.H. Cha, E.J. Rosenbaum, W. Zhang, Y. Seol, Thermal conductivity measurements in unsaturated hydrate-bearing sediments, Geophys. Res. Lett. 42(2015) 6295-6305. [35] W.F. Waite, J.C. Santamarina, D.D. Cortes, B. Dugan, D. Espinoza, J. Germaine, J. Jang, J. Jung, T.J. Kneafsey, H. Shin, Physical properties of hydrate-bearing sediments, Rev. Geophys. 47(2009), 2008RG000279. [36] A. Revil, Thermal conductivity of unconsolidated sediments with geophysical applications, J. Geophys. Res. Solid Earth 105(2000) 16749-16768. [37] J.C. Maxwell, A Treatise on Electricity and Magnetism, Clarendon press, 1881. [38] W. Woodside, J. Messmer, Thermal conductivity of porous media. I. Unconsolidated sands, J. Appl. Phys. 32(1961) 1688-1699. [39] R. Krupiczka, Analysis of thermal conductivity in granular materials, Int. Chem. Eng. 7(1967) 122-144. [40] A. Johnson, S. Patil, A. Dandekar, Experimental investigation of gas-water relative permeability for gas-hydrate-bearing sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope, Mar. Pet. Geol. 28(2011) 419-426. [41] B. Li, X.-S. Li, G. Li, J.-L. Jia, J.-C. Feng, Measurements of water permeability in unconsolidated porous media with methane hydrate formation, Energies 6(2013) 3622-3636. [42] Y. Konno, J. Yoneda, K. Egawa, T. Ito, Y. Jin, M. Kida, K. Suzuki, T. Fujii, J. Nagao, Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough, Mar. Pet. Geol. 66(2015) 487-495. [43] H. Minagawa, Y. Nishikawa, I. Ikeda, K. Miyazaki, N. Takahara, Y. Sakamoto, T. Komai, H. Narita, Characterization of sand sediment by pore size distribution and permeability using proton nuclear magnetic resonance measurement, J. Geophys. Res. Solid Earth 113(2008), B07210. [44] M.L. Delli, J.L. Grozic, Experimental determination of permeability of porous media in the presence of gas hydrates, J. Pet. Sci. Eng. 120(2014) 1-9. [45] R. Kleinberg, C. Flaum, D. Griffin, P. Brewer, G. Malby, E. Peltzer, J. Yesinowski, Deep sea NMR:Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability, J. Geophys. Res. Solid Earth 108(B10) (2003) 2508. [46] A. Kumar, B. Maini, P. Bishnoi, M. Clarke, O. Zatsepina, S. Srinivasan, Experimental determination of permeability in the presence of hydrates and its effect on the dissociation characteristics of gas hydrates in porous media, J. Pet. Sci. Eng. 70(2010) 114-122. [47] Y. Masuda, Numerical calculation of gas production performance from reservoirs containing natural gas hydrates, Annual Technical Conference, Soc. of Petrol. Eng., San Antonio, Tex, Oct. 1997. [48] R.D. Stoll, G.M. Bryan, Physical properties of sediments containing gas hydrates, J. Geophys. Res. Solid Earth 84(1979) 1629-1634. [49] X. Liu, P.B. Flemings, Dynamic multiphase flow model of hydrate formation in marine sediments, J. Geophys. Res. Solid Earth 112(2007), B03101. [50] M. Leverett, Capillary behavior in porous solids, Trans. AIME 142(1941) 152-169. [51] J. Rutqvist, G.J. Moridis, Numerical studies on the geomechanical stability of hydrate-bearing sediments, Offshore Technology Conference, Offshore Technology Conference, 2007. [52] A. Masui, K. Miyazaki, H. Haneda, Y. Ogata, K. Aoki, Mechanical Characteristics of Natural and Artificial Gas Hydrate Bearing Sediments, Proceedings of the 6th International Conference on Gas Hydrates, ICGH, Vancouver, Canada, 20086-10. [53] F. Ning, Y. Yu, S. Kjelstrup, T.J. Vlugt, K. Glavatskiy, Mechanical properties of clathrate hydrates:Status and perspectives, Energy Environ. Sci. 5(2012) 6779-6795. [54] N. Sultan, P. Cochonat, J.-P. Foucher, J. Mienert, Effect of gas hydrates melting on seafloor slope instability, Mar. Geol. 213(2004) 379-401. [55] M. Nixon, J.L. Grozic, Submarine slope failure due to gas hydrate dissociation:A preliminary quantification, Can. Geotech. J. 44(2007) 314-325. [56] M. Helgerud, W.F. Waite, S. Kirby, A. Nur, Elastic wave speeds and moduli in polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate, J. Geophys. Res. Solid Earth 114(2009), B02212. [57] J. Wu, F. Ning, T.T. Trinh, S. Kjelstrup, T.J.H. Vlugt, J. He, B.H. Skallerud, Z. Zhang, Mechanical instability of monocrystalline and polycrystalline methane hydrates, Nat. Commun. 6(2015) 8743. [58] W.B. Durham, S.H. Kirby, L.A. Stern, W. Zhang, The strength and rheology of methane clathrate hydrate, J. Geophys. Res. Solid Earth 108(B4) (2003) 2182. [59] H. Shimizu, T. Kumazaki, T. Kume, S. Sasaki, Elasticity of single-crystal methane hydrate at high pressure, Phys. Rev. B 65(2002) 212102. [60] H. Hirai, T. Kondo, M. Hasegawa, T. Yagi, Y. Yamamoto, T. Komai, K. Nagashima, M. Sakashita, H. Fujihisa, K. Aoki, Methane hydrate behavior under high pressure, J. Phys. Chem. B 104(2000) 1429-1433. [61] J. Loveday, R. Nelmes, M. Guthrie, S. Belmonte, D. Allan, D. Klug, J. Tse, Y. Handa, Stable methane hydrate above 2 GPa and the source of Titan's atmospheric methane, Nature 410(2001) 661. [62] L.A. Stern, S.H. Kirby, W.B. Durham, Polycrystalline methane hydrate:synthesis from superheated ice, and low-temperature mechanical properties, Energy Fuel 12(1998) 201-211. [63] T.S. Yun, J.C. Santamarina, C. Ruppel, Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate, J. Geophys. Res. Solid Earth 112(2007), B04106. [64] Z. Liu, S. Dai, F. Ning, L. Peng, H. Wei, C. Wei, Strength estimation for hydratebearing sediments from direct shear tests of hydrate-bearing sand and silt, Geophys. Res. Lett. 45(2018) 715-723. [65] M.Hyodo,J.Yoneda,N.Yoshimoto,Y.Nakata,Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed, Soils Found. 53(2013) 299-314. [66] R. Yan, C. Wei, Constitutive model for gas hydrate-bearing soils considering hydrate occurrence habits, Int. J. Geomech. 17(8) (2017) 1-6(04017032). [67] A.W. Bishop, The principle of effective stress, Teknisk ukeblad 39(1959) 859-863. [68] A. Klar, K. Soga, M. Ng, Coupled deformation-flow analysis for methane hydrate extraction, Geotechnique 60(2010) 765-776. [69] A. Klar, S. Uchida, K. Soga, K. Yamamoto, Explicitly coupled thermal flow mechanical formulation for gas-hydrate sediments, SPE J. 18(2013) 196-206. [70] C.-Y. Sun, G.-J. Chen, Methane hydrate dissociation above 0 C and below 0 C, Fluid Phase Equilib. 242(2006) 123-128. [71] K. Su, C. Sun, X. Yang, G. Chen, S. Fan, Experimental investigation of methane hydrate decomposition by depressurizing in porous media with 3-dimension device, J. Nat. Gas Chem. 19(2010) 210-216. [72] X. Yang, C.-Y. Sun, K.-H. Su, Q. Yuan, Q.-P. Li, G.-J. Chen, A three-dimensional study on the formation and dissociation of methane hydrate in porous sediment by depressurization, Energy Convers. Manag. 56(2012) 1-7. [73] L.-G. Tang, X.-S. Li, Z.-P. Feng, G. Li, S.-S. Fan, Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs, Energy Fuel 21(2007) 227-233. [74] Y. Zhou, M.J. Castaldi, T.M. Yegulalp, Experimental investigation of methane gas production from methane hydrate, Ind. Eng. Chem. Res. 48(2009) 3142-3149. [75] J. Lee, S. Park, W. Sung, An experimental study on the productivity of dissociated gas from gas hydrate by depressurization scheme, Energy Convers. Manag. 51(2010) 2510-2515. [76] X.-S. Li, Y. Zhang, Study on dissociation behaviors of methane hydrate in porous media based on experiments and fractional dimension shrinking-core model, Ind. Eng. Chem. Res. 50(2011) 8263-8271. [77] C. Haligva, P. Linga, J.A. Ripmeester, P. Englezos, Recovery of methane from a variable-volume bed of silica sand/hydrate by depressurization, Energy Fuel 24(2010) 2947-2955. [78] X.-S. Li, Y. Zhang, G. Li, Z.-Y. Chen, H.-J. Wu, Experimental investigation into the production behavior of methane hydrate in porous sediment by depressurization with a novel three-dimensional cubic hydrate simulator, Energy Fuel 25(2011) 4497-4505. [79] G. Li, B. Li, X.-S. Li, Y. Zhang, Y. Wang, Experimental and numerical studies on gas production from methane hydrate in porous media by depressurization in pilotscale hydrate simulator, Energy Fuel 26(2012) 6300-6310. [80] B. Li, X.-S. Li, G. Li, J.-C. Feng, Y. Wang, Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator, Appl. Energy 129(2014) 274-286. [81] Y. Zhang, X.-S. Li, Z.-Y. Chen, Y. Wang, X.-K. Ruan, Effect of hydrate saturation on the methane hydrate dissociation by depressurization in sediments in a cubic hydrate simulator, Ind. Eng. Chem. Res. 54(2015) 2627-2637. [82] Y. Kamata, T. Ebinuma, R. Omura, H. Minagawa, H. Narita, Y. Masuda, Y. Konno, Decomposition experiment of methane hydrate sediment by thermal recovery method, Proceedings of the 5th International Conference on Gas Hydrates 2005, pp. 81-85. [83] L.G. Tang, R. Xiao, C. Huang, Z. Feng, S.S. Fan, Experimental investigation of production behavior of gas hydrate under thermal stimulation in unconsolidated sediment, Energy Fuel 19(2005) 2402-2407. [84] G. Li, X.-S. Li, Y. Wang, Y. Zhang, Production behavior of methane hydrate in porous media using huff and puff method in a novel three-dimensional simulator, Energy 36(2011) 3170-3178. [85] T.-H. Kwon, H.-S. Kim, G.-C. Cho, Dissociation behavior of CO2 hydrate in sediments during isochoric heating, Environ. Sci. Technol. 42(2008) 8571-8577. [86] X. Yang, C.-Y. Sun, Q. Yuan, P.-C. Ma, G.-J. Chen, Experimental study on gas production from methane hydrate-bearing sand by hot-water cyclic injection, Energy Fuel 24(2010) 5912-5920. [87] S. Li, L. Zhang, X. Jiang, X. Li, Hot-brine injection for the dissociation of natural gas hydrates, Pet. Sci. Technol. 31(2013) 1320-1326. [88] H. Tian, C. Wei, R. Yan, H. Chen, A NMR-based analysis of carbon dioxide hydrate dissociation process in silt, Sci. Sin. Phys. Mech. Astron. 49(3) (2019), 034615(in Chinese). [89] H. Chen, C. Wei, H. Tian, H. Wei, NMR relaxation response of CO2 hydrate formation and dissociation in sand, Acta Phys. -Chim. Sin. 33(8) (2017) 1599-1604. [90] X.-x. Guo, X. Sun, L.-t. Shao, B.-y. Zhao, Current Situation of Constitutive Model for Soils Based on Thermodynamics Approach, Constitutive Modeling of Geomaterials, Springer, 2013547-552. [91] N. Goel, M. Wiggins, S. Shah, Analytical modeling of gas recovery from in situ hydrates dissociation, J. Pet. Sci. Eng. 29(2001) 115-127. [92] J. Rutqvist, G.J. Moridis, Development of a Numerical Simulator for Analyzing the Geomechanical Performance of Hydrate-bearing Sediments, Lawrence Berkeley National Laboratory, California, USA, 2008. [93] M. Uddin, F. Wright, D.A. Coombe, Numerical study of gas evolution and transport behaviours in natural gas-hydrate reservoirs, J. Can. Pet. Technol. 50(2011) 70-89. [94] Y. Masuda, A field-scale simulation study on gas productivity of formations containing gas hydrates, Proc. 4th International Conference on Gas Hydrates, Yokohama, Japan, 20022002, pp. 40-46. [95] G. Ahmadi, C. Ji, D.H. Smith, Numerical solution for natural gas production from methane hydrate dissociation, J. Pet. Sci. Eng. 41(2004) 269-285. [96] A. Bejan, L. Rocha, R. Cherry, Methane Hydrates in Porous Layers:Gas Formation and Convection, Transport Phenomena in Porous Media II, Elsevier, 2002365-396. [97] G.G. Tsypkin, Mathematical models of gas hydrates dissociation in porous media, Ann. N. Y. Acad. Sci. 912(2000) 428-436. [98] E. Bondarev, T. Kapitonova, Simulation of multiphase flow in porous media accompanied by gas hydrate formation and dissociation, Russ. J. Eng. Thermophys. 9(1-2) (1999) 83-95. [99] F. Oka, S. Kimoto, Y. Kim, N. Takada, Y. Higo, A finite element analysis of the thermo-hydro-mechanically coupled problem of cohesive deposit using a thermo-elasto-viscoplastic model, Poromechanics-Biot-centennial, Proc. 3rd Biot Conference on Poromechanics, Balkema 2005, pp. 383-388. [100] S. Kimoto, F. Oka, T. Fushita, M. Fujiwaki, A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation, Comput. Geotech. 34(2007) 216-228. [101] J. Rutqvist, G.J. Moridis, Coupled hydrologic, thermal and geomechanical analysis of well bore stability in hydrate-bearing sediments, Offshore Technology Conference, 2008. [102] J. Rutqvist, G. Moridis, T. Grover, T. Collett, Geomechanical response of permafrostassociated hydrate deposits to depressurization-induced gas production, J. Pet. Sci. Eng. 67(2009) 1-12. [103] J. Kim, G.J. Moridis, Development of the T+ M coupled flow-geomechanical simulator to describe fracture propagation and coupled flow-thermal-geomechanical processes in tight/shale gas systems, Comput. Geosci. 60(2013) 184-198. [104] R. Freij-Ayoub, C. Tan, B. Clennell, B. Tohidi, J. Yang, A wellbore stability model for hydrate bearing sediments, J. Pet. Sci. Eng. 57(2007) 209-220. [105] C.P. Tan, R. Freij-Ayoub, M.B. Clennell, B. Tohidi, J. Yang, Managing wellbore instability risk in gas hydrate-bearing sediments, SPE Asia Pacific Oil and Gas Conference and Exhibition, Society of Petroleum Engineers, 2005. [106] M. Liu, Y. Jin, Y. Lu, M. Chen, B. Hou, W. Chen, X. Wen, X. Yu, A wellbore stability model for a deviated well in a transversely isotropic formation considering poroelastic effects, Rock Mech. Rock. Eng. 49(2016) 3671-3686. [107] W. Cao, J. Deng, B. Yu, W. Liu, Q. Tan, Offshore wellbore stability analysis based on fully coupled poro-thermo-elastic theory, J. Geophys. Eng. 14(2017) 380. [108] Y. Cao, J. Deng, Wellbore stability research of heterogeneous formation, J. Appl. Sci. 14(2014) 33-39. [109] J. Jung, J. Jang, J. Santamarina, C. Tsouris, T. Phelps, C. Rawn, Gas production from hydrate-bearing sediments:the role of fine particles, Energy Fuel 26(2011) 480-487. [110] H. Oyama, J. Nagao, K. Suzuki, H. Narita, Experimental analysis of sand production from methane hydrate bearing sediments applying depressurization method, J. MMIJ 126(2010) 497-502. [111] J. Lu, Y. Xiong, D. Li, X. Shen, Q. Wu, D. Liang, Experimental investigation of characteristics of sand production in wellbore during hydrate exploitation by the depressurization method, Energies 11(2018) 1673. [112] A. Murphy, K. Soga, K. Yamamoto, A laboratory investigation of sand production simulating the 2013 Daini-Atsumi Knoll gas hydrate production trial using a high pressure plane strain testing apparatus, Proceedings of the 9th International Conferences on Gas Hydrate. Denver, Colorado, USA:ICGH9, 2017. [113] A. Klar, S. Uchida, Z. Charas, K. Yamamoto, Thermo-hydro-mechanical sand production model in hydrate-bearing sediments, International EAGE Workshop on Geomechanics and Energy, 2013. [114] M. Zhou, K. Soga, E. Xu, S. Uchida, K. Yamamoto, Numerical study on eastern Nankai Trough gas hydrate production test, Offshore Technology Conference, 2014. [115] E. Xu, K. Soga, M. Zhou, S. Uchida, K. Yamamoto, Numerical analysis of wellbore behaviour during methane gas recovery from hydrate bearing sediments, Offshore Technology Conference, 2014. [116] J. Grozic, Interplay between Gas Hydrates and Submarine Slope Failure, Submarine mass movements and their consequences, Springer, 201011-30. [117] J. Grozic, T. Kvalstad, Effect of gas on deepwater marine sediments, Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering, aa balkema publishers 2001, pp. 2289-2294. [118] X. Long, K.M. Tjok, C.S. Wright, A.F. Witthoeft, Assessing well integrity using numerical simulation of Wellbore stability during production in gas hydrate bearing sediments, Offshore Technology Conference, 2014. [119] H. Zhang, Y. Cheng, Q. Li, C. Yan, X. Han, Numerical analysis of wellbore instability in gashydrateformationduringdeep-waterdrilling, J. Ocean Univ. China17(2018)8-16. [120] Z. Liu, X. Yu, Thermo-hydro-mechanical-chemical simulation of methane hydrate dissociation in porous media, Geotech. Geol. Eng. 31(2013) 1681-1691. [121] S. Kimoto, F. Oka, T. Fushita, A chemo-thermo-mechanically coupled analysis of ground deformation induced by gas hydrate dissociation, Int. J. Mech. Sci. 52(2010) 365-376. |
[1] | Peng-Fei Shen, Gang Li, Xiao-Sen Li, Bo Li, Jin-Ming Zhang. Application of fracturing technology to increase gas production in low-permeability hydrate reservoir: A numerical study [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 267-277. |
[2] | Ekta Chaturvedi, Sukumar Laik, Ajay Mandal. A comprehensive review of the effect of different kinetic promoters on methane hydrate formation [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 1-16. |
[3] | Qihui Hu, Xiaoyu Wang, Wuchang Wang, Yuxing Li, Shuai Liu. Growth and aggregation micromorphology of natural gas hydrate particles near gas-liquid interface under stirring condition [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 65-77. |
[4] | Shuqi Fang, Xinyue Zhang, Jingyi Zhang, Chun Chang, Pan Li, Jing Bai. Evaluation on the natural gas hydrate formation process [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 881-888. |
[5] | Vyacheslav G. Smirnov, Valeriy V. Dyrdin, Andrey Yu. Manakov, Zinfer R. Ismagilov. Decomposition of carbon dioxide hydrate in the samples of natural coal with different degrees of metamorphism [J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 492-501. |
[6] | Chungang Xu, Xiaosen Li, Kefeng Yan, Xuke Ruan, Zhaoyang Chen, Zhiming Xia. Research progress in hydrate-based technologies and processes in China: A review [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 1998-2013. |
[7] | Jianan Zheng, Fanbao Cheng, Yuanping Li, Xin Lü, Mingjun Yang. Progress and trends in hydrate based desalination (HBD) technology: A review [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2037-2043. |
[8] | Prajakta Nakate, Bappa Ghosh, Subhadip Das, Sudip Roy, Rajnish Kumar. Molecular dynamics study on growth of carbon dioxide and methane hydrate from a seed crystal [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2074-2080. |
[9] | Wenxiang Zhang, Shuanshi Fan, Yanhong Wang, Xuemei Lang, Kai Guo, Jianbiao Chen. Evidence for pore-filling gas hydrates in the sediments through morphology observation [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2081-2088. |
[10] | Cuiping Tang, Deqing Liang. Inhibitory effects of novel green inhibitors on gas hydrate formation [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2107-2117. |
[11] | Yanhong Wang, Shuanshi Fan, Xuemei Lang. Reviews of gas hydrate inhibitors in gas-dominant pipelines and application of kinetic hydrate inhibitors in China [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2118-2132. |
[12] | Lei Yang, Yulong Liu, Hanquan Zhang, Bo Xiao, Xianwei Guo, Rupeng Wei, Lei Xu, Lingjie Sun, Bin Yu, Shudong Leng, Yanghui Li. The status of exploitation techniques of natural gas hydrate [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2133-2147. |
[13] | Sheshan Bhimrao Meshram, Omkar S Kushwaha, Palle Ravinder Reddy, Gaurav Bhattacharjee, Rajnish Kumar. Investigation on the effect of oxalic acid, succinic acid and aspartic acid on the gas hydrate formation kinetics [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2148-2156. |
[14] | Xiaoya Zang, Lihua Wan, Deqing Liang. Investigation of the hydrate formation process in fine sediments by a binary CO2/N2 gas mixture [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2157-2163. |
[15] | Youhong Sun, Shuhui Jiang, Shengli Li, Guobiao Zhang, Wei Guo. Growth kinetics of hydrate formation from water–hydrocarbon system [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2164-2179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||