Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (9): 2213-2225.DOI: 10.1016/j.cjche.2019.02.036
Jingchun Feng1,2, Longtao Sun3, Yi Wang4,5,6, Xiaosen Li4,5,6
Received:
2018-07-23
Revised:
2018-11-21
Online:
2019-12-04
Published:
2019-09-28
Contact:
Xiaosen Li
Supported by:
Jingchun Feng1,2, Longtao Sun3, Yi Wang4,5,6, Xiaosen Li4,5,6
通讯作者:
Xiaosen Li
基金资助:
Jingchun Feng, Longtao Sun, Yi Wang, Xiaosen Li. Advances of experimental study on gas production from synthetic hydrate reservoir in China[J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2213-2225.
Jingchun Feng, Longtao Sun, Yi Wang, Xiaosen Li. Advances of experimental study on gas production from synthetic hydrate reservoir in China[J]. 中国化学工程学报, 2019, 27(9): 2213-2225.
[1] C.J. Lyu, X.M. Ou, X.L. Zhang, China automotive energy consumption and greenhouse gas emissions outlook to 2050, Mitig. Adapt. Strateg. Glob. Chang. 20(5) (2015) 627-650. [2] X.S. Li, C.G. Xu, Y. Zhang, X.K. Ruan, G. Li, Y. Wang, Investigation into gas production from natural gas hydrate:A review, Appl. Energy 172(2016) 286-322. [3] Z.R. Chong, S.H.B. Yang, P. Babu, P. Linga, X.S. Li, Review of natural gas hydrates as an energy resource:Prospects and challenges, Appl. Energy 162(2016) 1633-1652. [4] E.D. Sloan, Clathrate Hydrates of Natural Gases, CRC Press, Boca Raton, 2008. [5] D. Mahajan, C.E. Taylor, G.A. Mansoori, An introduction to natural gas hydrate/clathrate:The major organic carbon reserve of the Earth, J. Pet. Sci. Eng. 56(2007) 1-8. [6] T.S. Collett, Results at Mallik highlight progress in gas hydrate energy resource research and development, Petrophysics. 46(3) (2005) 237-243. [7] Y.F. Makogon, Natural gas hydrates-A promising source of energy, J. Nat. Gas Sci. Eng. 2(2010) 19-59. [8] H. Tomaru, U. Fehn, Z.L. Lu, R. Matsumoto, Halogen systematics in the Mallik 5L-38 gas hydrate production research well, Northwest Territories, Canada:Implications for the origin of gas hydrates under terrestrial permafrost conditions, Appl. Geochem. 22(3) (2007) 656-675. [9] R.B. Hunter, T.S. Collett, R. Boswell, B.J. Anderson, S.A. Digert, G. Pospisil, et al., Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope:Overview of scientific and technical program, Mar. Pet. Geol. 28(2011) 295-310. [10] R.M. Haberer, K. Mangelsdorf, H. Wilkes, B. Horsfield, Occurrence and paleoenvironmental significance of aromatic hydrovarbon biomarkers in oligocene sediments from the Mallik 5L-38 Gas Hydrate Production Research Well(Canada), Org. Geochem. 37(5) (2006) 519-538. [11] H. Tomaru, U. Fehn, Z.L. Lu, R. Matsumoto, Halogen systematics in the Mallik 5L-38 gas hydrate production research well, Northwest Territories, Canada:implications for the origin of gas hydrates under terrestrial permafrost conditions, Appl. Geochem. 22(3) (2007) 656-675. [12] Y. Konno, T. Fujii, A. Sato, K. Akamine, et al., Key findings of the world's first offshore methane hydrate production test off the coast of Japan:Toward future commercial production, Energy Fuels 31(3) (2017) 2607-2616. [13] X.S. Wu, W.C. Liu, F. Xue, M.H. Wang, P. Lv, World-wide progress of resource potential assessment, exploration and production test of natural gas hydrate, Mar. Geol. Front. 33(2017) 63-78. [14] C.L. Liu, J.Y. Sun, N.Y. Wu, Gas hydrate production test:from experimental simulation to field practice, Mar. Geol. Quat. Geol. 37(2017) 12-26. [15] T.J. Phelps, PD, S.L. Marshall, et al., A new experimental facility for investigating the formation and properties of gas hydrates under simulated seafloor conditions, Rev. Sci. Instrum. 72(2001) 1514-1521. [16] H.O. Kono, F. Song, et al., Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing, Powder Technol. 122(2002) 239-246. [17] P. Linga, C. Haligva, S.C. Nam, J.A. Ripmeester, P. Englezos, Recovery of methane from hydrate formed in a variable volume bed of silica sand particles, Energy Fuel 23(11) (2009) 5508-5516. [18] X.S. Li, B. Yang, Y. Zhang, G. Li, L.P. Duan, Y. Wang, et al., Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator, Appl. Energy 93(2012) 722-732. [19] K.H. Su, C.Y. Sun, N. Li, A large scale three-dimensional device for simulating natural gas hydrates accumulation and distribution process in sediments, Nat. Gas Ind. 33(12) (2013) 173-178(in Chinese). [20] M.H. YousiF, AH, M.S. Selim, Experimental and theoretical investigation of methanegas-hydrate dissociation in porous media, SPE Reserv. Eng. 6(1991) 69-76. [21] Y. Konno, Y. Jin, K. Shinjou, J. Nagao, Experimental evaluation of the gas recovery factor of methane hydrate in sandy sediment, RSC Adv. 4(2014) 51666-51675. [22] J.S. Booth, WW, W.P. Dilon, Apparatus investigates geological aspects of gas hydrates, Oil Gas J. 8(1999). [23] E. Spangenberg, M. Priegnitz, K. Heeschen, et al., Are laboratory-formed hydratebearing systems Analogous to those in nature? J. Chem. Eng. Data 60(2) (2015) 258-268. [24] M. Mottahedin, F. Varaminian, K. Mafakheri, Modeling of methane and ethane hydrate formation kinetics based on non-equilibrium thermodynamics, J. NonEquilib. Thermodyn. 36(1) (2011) 3-22. [25] T.M. Guo, B.H. Wu, Y.H. Zhu, S.S. Fan, G.J. Chen, A review on the gas hydrate research in China, J. Pet. Sci. Eng. 41(1-3) (2004) 11-20. [26] Y.H. Zhu, Y.Q. Zhang, Formation conditions of gas hydrates in permafrost of the Qilian Mountains, Northwest China, Geol. Bull. China 25(2006) 58-63. [27] Y.H. Zhu, Y.Q. Zhang, H.J. Wen, Z.Q. Lu, Z.Y. Jia, Y.H. Li, et al., Gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China, Acta Geol Sin. Engl. 84(2010) 1-10. [28] Xiao Kun, ZC, Lu Zhenquan, Deng Juzi, Gas hydrate saturations estimated from poreand fracture-filling gas hydrate reservoirs in the Qilian Mountain permafrost, China, Sci. Rep. Uk. 7(2017) 1-16. [29] S.X. Yang, N.Y. Wu, X. Su, P.J. Schultheiss, M. Holland, G.X. Zhang, J.Q. Liang, J.A. Lu, K. Rose, High concentration hydrate in disseminated forms obtained in Shenhu Area, North Slope of South China Sea, The 6th International Conference on Gas Hydrates, 2008, (Vancouver, British Columbia, Canada). [30] X. Wang, S. Wu, S. Yuan, D. Wang, Y. Ma, G. Yao, et al., Geophysical signatures associated with fluid flow and gas hydrate occurrence in a tectonically quiescent sequence, Qiongdongnan Basin, South China Sea, Geofluids. 10(2010) 351-368. [31] X.Q. Han, E. Suess, Y.Y. Huang, N.Y. Wu, G. Bohrrnann, X. Su, et al., Jiulong methane reef:Microbial mediation of seep carbonates in the South China Sea, Mar. Geol. 249(2008) 243-256. [32] H.Q. Zhang, YS, N.Y. Wu, X. Su, M. Holland, P. rSchultheiss, K. Rose, H. Butler, G. Humphrey, GMGS-1 Science Team, Successful and Surprising Results for China's First Gas Hydrate Drilling Expedition, Fire in the Ice, 20076-9. [33] Z.Y. Yin, G. Moridis, H.K. Tan, P. Linga, Numerical analysis of experimental studies of methane hydrate formation in a sandy porous medium, Appl. Energy 220(2018) 681-704. [34] Q. Yuan, C.Y. Sun, X. Yang, P.C. Ma, Z.W. Ma, Q.P. Li, et al., Gas production from methane-hydrate-bearing sands by ethylene glycol injection using a threedimensional reactor, Energy Fuel 25(2011) 3108-3115. [35] G. Li, X.S. Li, L.G. Tang, Y. Zhang, Experimental investigation of production behavior of methane hydrate under ethylene glycol injection in unconsolidated sediment, Energy Fuel 21(2007) 3388-3393. [36] S.S. Fan, Y.Z. Zhang, G.L. Tian, D.Q. Liang, D.L. Li, Natural gas hydrate dissociation by presence of ethylene glycol, Energy Fuel 20(2006) 324-326. [37] F.H. Dong, X.Y. Zang, D.L. Li, S.A.S. Fan, D.Q. Liang, Experimental investigation on propane hydrate dissociation by high concentration methanol and ethylene glycol solution injection, Energy Fuel 23(2009) 1563-1567. [38] S.X. Li, Z.Q. Wang, X.H. Xu, R.Y. Zheng, J. Hou, Experimental study on dissociation of hydrate reservoirs with different saturations by hot brine injection, J. Nat. Gas Sci. Eng. 46(2017) 555-562. [39] X. Yang, C.Y. Sun, K.H. Su, Q. Yuan, Q.P. Li, G.J. Chen, A three-dimensional study on the formation and dissociation of methane hydrate in porous sediment by depressurization, Energy Convers. Manag. 56(2012) 1-7. [40] J.F. Zhao, Z. Fan, B. Wang, H.S. Dong, Y. Liu, Y.C. Song, Simulation of microwave stimulation for the production of gas from methane hydrate sediment, Appl. Energy 168(2016) 25-37. [41] X.S. Li, Y. Zhang, G. Li, Z.Y. Chen, H.J. Wu, Experimental investigation into the production behavior of methane hydrate in porous sediment by depressurization with a novel three-dimensional cubic hydrate simulator, Energy Fuel 25(2011) 4497-4505. [42] L.G. Tang, X.S. Li, Z.P. Feng, G. Li, S.S. Fan, Control mechanisms for gas hydrate production by depressurization in different scale hydrate reservoirs, Energy Fuel 21(2007) 227-233. [43] Z.Y. Yin, Z.R. Chong, H.K. Tan, P. Linga, Review of gas hydrate dissociation kinetic models for energy recovery, J. Nat. Gas Sci. Eng. 35(2016) 1362-1387. [44] J.C. Feng, Y. Wang, X.S. Li, G. Li, Y. Zhang, Z.Y. Chen, Effect of horizontal and vertical well patterns on methane hydrate dissociation behaviors in pilot-scale hydrate simulator, Appl. Energy 145(2015) 69-79. [45] J.C. Feng, Y. Wang, X.S. Li, Dissociation characteristics of water-saturated methane hydrate induced by huff and puff method, Appl. Energy 211(2018) 1171-1178. [46] Y. Wang, J.C. Feng, X.S. Li, Y. Zhang, Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization, Appl. Energy 181(2016) 299-309. [47] B. Li, G. Li, X.S. Li, Q.P. Li, B. Yang, Y. Zhang, et al., Gas production from methane hydrate in a pilot-scale hydrate simulator using the huff and puff method by experimental and numerical studies, Energy Fuel 26(2012) 7183-7194. [48] L.X. Zhang, J.F. Zhao, H.S. Dong, Y.C. Zhao, Y. Liu, Y. Zhang, et al., Magnetic resonance imaging for in-situ observation of the effect of depressurizing range and rate on methane hydrate dissociation, Chem. Eng. Sci. 144(2016) 135-143. [49] Z.R. Chong, J.Z. Zhao, J.H.R. Chan, Z.Y. Yin, P. Linga, Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment, Appl. Energy 214(2018) 117-130. [50] C. Ji, G. Ahmadi, D.H. Smith, Natural gas production from hydrate decomposition by depressurization, Chem. Eng. Sci. 56(2001) 5801-5814. [51] G.J. Moridis, M.B. Kowalsky, K. Pruess, Depressurization-induced gas production from class 1 hydrate deposits, SPE Reserv. Eval. Eng. 10(2007) 458-481. [52] Z.Y. Yin, G. Moridis, Z.R. Chong, H.K. Tan, P. Linga, Numerical analysis of experimental studies of methane hydrate dissociation induced by depressurization in a sandy porous medium, Appl. Energy 230(2018) 444-459. [53] Z.R. Chong, Z.Y. Yin, J.H.C. Tan, P. Linga, Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach, Appl. Energy 204(2017) 1513-1525. [54] L.J. Xiong, X.S. Li, Y. Wang, C.G. Xu, Experimental study on methane hydrate dissociation by depressurization in porous sediments, Energies 5(2012) 518-530. [55] D.X. Li, S.R. Ren, L. Zhang, Y.X. Liu, Dynamic behavior of hydrate dissociation for gas production via depressurization and its influencing factors, J. Pet. Sci. Eng. 146(2016) 552-560. [56] Y. Wang, J.-C. Feng, X.-S. Li, Y. Zhang, Experimental and modeling analyses of scaling criteria for methane hydrate dissociation in sediment by depressurization, Appl. Energy 181(2016) 299-309. [57] H. Oyama, Y. Konno, Y. Masuda, H. Narita, Dependence of depressurization-induced dissociation of methane hydrate bearing laboratory cores on heat transfer, Energy Fuel 23(2009) 4995-5002. [58] B. Li, X.S. Li, G. Li, J.C. Feng, Y. Wang, Depressurization induced gas production from hydrate deposits with low gas saturation in a pilot-scale hydrate simulator, Appl. Energy 129(2014) 274-286. [59] Y. Wang, J.C. Feng, X.S. Li, Y. Zhang, G. Li, Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment, Appl. Energy 162(2016) 372-381. [60] Q.B. Wu, Y.M. Wang, J. Zhan, Effect of rapidly depressurizing and rising temperature on methane hydrate dissociation, J. Nat. Gas Chem. 21(2012) 91-97. [61] Y. Zhang, X.S. Li, Z.Y. Chen, Y. Wang, X.K. Ruan, Effect of hydrate saturation on the methane hydrate dissociation by depressurization in sediments in a cubic hydrate simulator, Ind. Eng. Chem. Res. 54(2015) 2627-2637. [62] Y. Zhang, X.S. Li, Z.Y. Chen, G. Li, Y. Wang, Experimental investigation into gas hydrate formation in sediments with cooling method in three-dimensional simulator, Ind. Eng. Chem. Res. 53(37) (2014) 14208-14216. [63] J.C. Feng, Y. Wang, X.S. Li, Entropy generation analysis of hydrate dissociation by depressurization with horizontal well in different scales of hydrate reservoirs, Energy 125(2017) 62-71. [64] Z.R. Chong, J.W.R. Moh, Z. Yin, J. Zhao, P. Linga, Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments, Appl. Energy 229(2018) 637-647. [65] Q. Yuan, C.Y. Sun, X.H. Wang, X.Y. Zeng, X. Yang, B. Liu, et al., Experimental study of gas production from hydrate dissociation with continuous injection mode using a three-dimensional quiescent reactor, Fuel. 106(2013) 417-424. [66] X. Yang, C.Y. Sun, Q. Yuan, P.C. Ma, G.J. Chen, Experimental study on gas production from methane hydrate-bearing sand by hot-water cyclic injection, Energy Fuel 24(2010) 5912-5920. [67] X.S. Li, B. Yang, G. Li, B. Li, Y. Zhang, Z.Y. Chen, Experimental study on gas production from methane hydrate in porous media by huff and puff method in Pilot-Scale Hydrate Simulator, Fuel. 94(2012) 486-494. [68] Y. Wang, X.S. Li, G. Li, Y. Zhang, B. Li, Z.Y. Chen, Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system, Appl. Energy 110(2013) 90-97. [69] J.C. Feng, Y. Wang, X.S. Li, G. Li, Z.Y. Chen, Production behaviors and heat transfer characteristics of methane hydrate dissociation by depressurization in conjunction with warm water stimulation with dual horizontal wells, Energy. 79(2015) 315-324. [70] J.C. Feng, Y. Wang, X.S. Li, Z.Y. Chen, G. Li, Y. Zhang, Investigation into optimization condition of thermal stimulation for hydrate dissociation in the sandy reservoir, Appl. Energy 154(2015) 995-1003. [71] S. He, D.Q. Liang, D.L. Li, L.L. Ma, Experimental investigation on the dissociation behavior of methane gas hydrate in an unconsolidated sediment by microwave stimulation, Energy Fuel 25(2011) 33-41. [72] Y. Lee, Y. Kim, J. Lee, H. Lee, Y. Seo, CH4 recovery and CO2 sequestration using flue gas in natural gas hydrates as revealed by a micro-differential scanning calorimeter, Appl. Energy 150(2015) 120-127. [73] J.B. Wang, GX, G.J. Chen, Z.Z. Li, Y.Y. Yang, Experimental research on methane recovery from natural gas hydrate by carbon dioxide replacement, J. Chem. Eng. Chin. Univ. 21(2007) 715-719. [74] Z.Z. Li, GX, J.B. Wang, L.Y. Yang, Experimental studied on CH4 recovery from hydrate using CO2 in different systems, Nat. Gas Ind. 28(2008) 129-133. [75] M. Ota, K. Morohashi, Y. Abe, M. Watanabe, R.L. Smith, H. Inomata, Replacement of CH4 in the hydrate by use of liquid CO2, Energy Convers. Manag. 46(2005) 1680-1691. [76] Q. Yuan, C.Y. Sun, B. Liu, X. Wang, Z.W. Ma, Q.L. Ma, et al., Methane recovery from natural gas hydrate in porous sediment using pressurized liquid CO2, Energy Convers. Manag. 67(2013) 257-264. [77] X.T. Zhou, S.S. Fan, D.Q. Liang, J.W. Du, Replacement of methane from quartz sandbearing hydrate with carbon dioxide-in-water emulsion, Energy Fuel 22(2008) 1759-1764. [78] Z.Z. Li, X.Q. Guo, L.Y. Yang, X.N. Ma, Exploitation of methane in the hydrate by use of carbon dioxide in the presence of sodium chloride, Pet. Sci. 6(2009) 426-432. [79] B. Li, T.F. Xu, G.B. Zhang, W. Guo, H.N. Liu, Q.W. Wang, et al., An experimental study on gas production from fracture-filled hydrate by CO2 and CO2/N2 replacement, Energy Convers. Manag. 165(2018) 738-747. [80] Y.J. Lin, H.P. Veluswamy, P. Linga, Effect of eco-friendly cyclodextrin on the kinetics of mixed methane-tetrahydrofuran hydrate formation, Ind. Eng. Chem. Res. 57(2018) 5944-5950. [81] Y.F. Makogon, Hydrates of Natural Gas, Penn Well Books, Tulsa, OK, 1981. [82] X.S. Li, L.H. Wan, G. Li, Q.P. Li, Z.Y. Chen, K.F. Yan, Experimental investigation into the production behavior of methane hydrate in porous sediment with hot brine stimulation, Ind. Eng. Chem. Res. 47(2008) 9696-9702. [83] Y. Wang, X.S. Li, G. Li, Y. Zhang, B. Li, J.C. Feng, A three-dimensional study on methane hydrate decomposition with different methods using five-spot well, Appl. Energy 112(2013) 83-92. [84] Y. Wang, X.S. Li, G. Li, N.S. Huang, J.C. Feng, Experimental study on the hydrate dissociation in porous media by five-spot thermal huff and puff method, Fuel. 117(2014) 688-696. [85] J.C. Feng, Y. Wang, X.S. Li, Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silica sand, Appl. Energy 174(2016) 181-191. [86] X.H. Wang, C.Y. Sun, G.J. Chen, Y.N. He, Y.F. Sun, Y.F. Wang, et al., Influence of gas sweep on methane recovery from hydrate-bearing sediments, Chem. Eng. Sci. 134(2015) 727-736. [87] L.X. Zhang, L. Yang, J.Q. Wang, J.F. Zhao, H.S. Dong, M.J. Yang, et al., Enhanced CH4 recovery and CO2 storage via thermal stimulation in the CH4/CO2 replacement of methane hydrate, Chem. Eng. J. 308(2017) 40-49. [88] Y.H. Li, Y.C. Song, W.G. Liu, F. Yu, Experimental research on the mechanical properties of methane hydrate-ice mixtures, Energies 5(2012) 181-192. [89] X.H. Zhang, X.B. Lu, Y.H. Shi, Z. Xia, Study on the mechanical properties of hydratebearing silty clay, Mar. Pet. Geol. 67(2015) 72-80. [90] H. Han, Y. Wang, X.S. Li, J.X. Yu, J.C. Feng, Y. Zhang, Experimental study on sediment deformation during methane hydrate decomposition in sandy and silty clay sediments with a novel experimental apparatus, Fuel. 182(2016) 446-453. [91] L. Yu, Y. Xu, Z.W. Gong, F. Huang, L. Zhang, S.R. Ren, Experimental study and numerical modeling of methane hydrate dissociation and gas invasion during drilling through hydrate bearing formations, J. Pet. Sci. Eng. 168(2018) 507-520. |
[1] | Qihui Hu, Xiaoyu Wang, Wuchang Wang, Yuxing Li, Shuai Liu. Growth and aggregation micromorphology of natural gas hydrate particles near gas-liquid interface under stirring condition [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 65-77. |
[2] | Shuqi Fang, Xinyue Zhang, Jingyi Zhang, Chun Chang, Pan Li, Jing Bai. Evaluation on the natural gas hydrate formation process [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 881-888. |
[3] | Lei Yang, Yulong Liu, Hanquan Zhang, Bo Xiao, Xianwei Guo, Rupeng Wei, Lei Xu, Lingjie Sun, Bin Yu, Shudong Leng, Yanghui Li. The status of exploitation techniques of natural gas hydrate [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2133-2147. |
[4] | Prajakta Nakate, Bappa Ghosh, Subhadip Das, Sudip Roy, Rajnish Kumar. Molecular dynamics study on growth of carbon dioxide and methane hydrate from a seed crystal [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2074-2080. |
[5] | Zhenyuan Yin, Praveen Linga. Methane hydrates: A future clean energy resource [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 2026-2036. |
[6] | Chungang Xu, Xiaosen Li, Kefeng Yan, Xuke Ruan, Zhaoyang Chen, Zhiming Xia. Research progress in hydrate-based technologies and processes in China: A review [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 1998-2013. |
[7] | Weijun Li, Jakob Kjøbsted Huusom, Zhimao Zhou, Yi Nie, Yajing Xu, Xiangping Zhang. Multi-objective optimization of methane production system from biomass through anaerobic digestion [J]. Chin.J.Chem.Eng., 2018, 26(10): 2084-2092. |
[8] | Cuiwen Cao, Yakun Zhang, Teng Yu, Xingsheng Gu, Zhong Xin, Jie Li. A novel 3-layer mixed cultural evolutionary optimization framework for optimal operation of syngas production in a Texaco coal-water slurry gasifier [J]. , 2015, 23(9): 1484-1501. |
[9] | LI Shuxia1, XIA Xiran, XUAN Jian, LIU Yaping, LI Qingping. Resistivity in Formation and Decomposition of Natural Gas Hydrate in Porous Medium [J]. , 2010, 18(1): 39-42. |
[10] | GAO Jun, Kenneth N. Marsh. Calorimetric Determination of Enthalpy of Formation of Natural Gas Hydrates [J]. , 2003, 11(3): 276-279. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 193
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 516
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||