[1] O. Korotkikh, R. Farrauto, Selective catalytic oxidation of CO in H2:Fuel cell applications, Catal. Today. 62(2000) 249-254. [2] E.D. Park, D. Lee, H.C. Lee, Recent progress in selective CO removal in a H2-rich stream, Catal. Today. 139(2009) 280-290. [3] G. Avgouropoulos, T. Ioannides, C. Papadopoulou, et al., A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catal. Today. 75(2002) 157-167. [4] W. Deng, J.D. Jesus, H. Saltsburg, et al., Low-content gold-ceria catalysts for the water-gas shift and preferential CO oxidation reactions, Appl. Catal. A Gen. 291(2005) 126-135. [5] M. Haruta, N. Yamada, T. Kobayashi, et al., Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal. 115(1989) 301-309. [6] L. Prati, A. Villa, Gold colloids:From quasi-homogeneous to heterogeneous catalytic systems, Acc. Chem. Res. 47(2014) 855-863. [7] S. Yusuf, F. Jiao, Effect of the support on the photocatalytic water oxidation activity of cobalt oxide nanoclusters, ACS Catal. 2(2012) 2753-2760. [8] M. Haruta, Size- and support-dependency in the catalysis of gold, Catal. Today. 36(1997) 153-166. [9] L. Wang, J. Zhang, Y. Zhu, et al., Strong metal-support interactions achieved by hydroxide-to-oxide support transformation for preparation of sinter-resistant gold nanoparticle catalysts, ACS Catal. 7(2017) 7461-7465. [10] Y. Denkwitz, B. Schumacher, G. Kučerová, et al., Activity, stability, and deactivation behavior of supported Au/TiO2 catalysts in the CO oxidation and preferential CO oxidation reaction at elevated temperatures, J. Catal. 267(2009) 78-88. [11] D. Widmann, E. Hocking, R.J. Behm, On the origin of the selectivity in the preferential CO oxidation on Au/TiO2-Nature of the active oxygen species for H2 oxidation, J. Catal. 317(2014) 272-276. [12] J. Fonseca, S. Royer, N. Bion, et al., Preferential CO oxidation over nanosized gold catalysts supported on ceria and amorphous ceria-alumina, Appl. Catal. B Environ. 128(2012) 10-20. [13] I. Moreno, N. Navascues, S. Irusta, et al., Electrospun Au/CeO2 nanofibers:A highly accessible low-pressure drop catalyst for preferential CO oxidation, J. Catal. 329(2015) 479-489. [14] O.H. Laguna, A. Pérez, M.A. Centeno, et al., Synergy between gold and oxygen vacancies in gold supported on Zr-doped ceria catalysts for the CO oxidation, Appl. Catal. B Environ. 176(2015) 385-395. [15] F. Zhu, Y. Zhang, X. Gu, et al., CO preferential oxidation in a novel Au@ZrO2 flowthrough catalytic membrane reactor with high stability and efficiency, Int. J. Hydrog. Energy. 41(2016) 13513-13520. [16] L. Li, A. Wang, B. Qiao, et al., Origin of the high activity of Au/FeOx for lowtemperature CO oxidation:Direct evidence for a redox mechanism, J. Catal. 299(2013) 90-100. [17] M.M. Schubert, S. Hackenberg, A.C. van Veen, et al., CO oxidation over supported gold catalysts-"inert" and "active" support materials and their role for the oxygen supply during reaction, J. Catal. 197(2001) 113-122. [18] J. Lu, C. Aydin, N.D. Browning, et al., Imaging isolated gold atom catalytic sites in zeolite NaY, Angew. Chem. Int. Ed. 51(2012) 5842-5846. [19] J.H. Chen, J.N. Lin, Y.M. Kang, et al., Preparation of nano-gold in zeolites for CO oxidation:Effects of structures and number of ion exchange sites of zeolites, Appl. Catal. A Gen. 291(2005) 162-169. [20] T. Magadzu, M.S. Scurrell, Stability of gold particles in NaY-type zeolites:Promotional effects of co-exchanged metal cations, Microporous Mesoporous Mater. 241(2017) 52-57. [21] T. Westermann, T. Melin, Flow-through catalytic membrane reactors-principles and applications, Chem. Eng. Process. Process Intensif. 48(2009) 17-28. [22] M.M. Yousef Motamedhashemi, F. Egolfopoulos, T. Tsotsis, Flow-through catalytic membrane reactors for the destruction of a chemical warfare simulant:Dynamic performance aspects, Catal. Today. 268(2016) 130-141. [23] X. Wang, Y. Guo, X. Zhang, et al., Catalytic properties of benzene hydroxylation by TS-1 film reactor and Pd-TS-1 composite membrane reactor, Catal. Today. 156(2010) 288-294. [24] F. Zhu, L. Peng, X. Yao, et al., Hollow-fiber-supported gold and zirconium-doped faujasite catalytic membranes for hydrogen purification, Energy Technol. 5(2017) 2283-2293. [25] P. Bernardo, C. Algieri, G. Barbieri, et al., Hydrogen purification from carbon monoxide by means of selective oxidation using zeolite catalytic membranes, Sep. Purif. Technol. 62(2008) 629-635. [26] T.M. Salama, T. Shido, H. Minagawa, et al., Characterization of gold(I) in NaY zeolite and acidity generation, J. Catal. 152(1995) 322-330. [27] D. Guillemot, M. Polisset-Thfoin, J. Fraissard, Preparation of nanometeric gold particles on NaHY, Catal. Lett. 41(1996) 143-148. [28] J.N. Lin, J.H. Chen, C.Y. Hsiao, et al., Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation, Appl. Catal. B Environ. 36(2002) 19-29. [29] Y.H. Chen, S.J. Huang, B.Z. Wan, Reversal of zeta potential of proton-type zeolite Y after surface modifications in sodium ion aqueous solutions, Ind. Eng. Chem. Res. 55(2016) 1921-1928. [30] Y.H. Chen, C.Y. Mou, B.Z. Wan, Ultrasmall gold nanoparticles confined in zeolite Y:Preparation and activity in CO oxidation, Appl. Catal. B Environ. 218(2017) 506-514. [31] Y.M. Kang, B.Z. Wan, Preparation of gold in Y-type zeolite for carbon monoxide oxidation, Appl. Catal. A Gen. 128(1995) 53-60. [32] W. Zhan, Q. He, X. Liu, et al., A sacrificial coating strategy toward enhancement of metal-support interaction for ultrastable Au nanocatalysts, J. Am. Chem. Soc. 138(2016) 16130-16139. [33] Y. Kang, X. Ye, J. Chen, et al., Engineering catalytic contacts and thermal stability:Gold/iron oxide binary nanocrystal superlattices for CO oxidation, J. Am. Chem. Soc. 135(2013) 1499-1505. [34] Z. Shi, Y. Zhang, C. Cai, et al., Preparation and characterization of α-Al2O3 hollow fiber membranes with four-channel configuration, Ceram. Int. 41(2015) 1333-1339. [35] X. Gu, J. Dong, T.M. Nenoff, Synthesis of defect-free FAU-type zeolite membranes and separation for dry and moist CO2/N2 mixtures, Ind. Eng. Chem. Res. 44(2005) 937-944. |