[1] D. Wang, J.L. Chu, Y.H. Liu, L. Jie, T.Y. Xue, W.J. Wang, T. Qi, Novel process for titanium dioxide production from titanium slag:NaOH-KOH binary molten salt roasting and water leaching, Ind. Eng. Chem. Res. 52(2013) 15756-15762. [2] L.S. Zhao, Y.H. Liu, L. Wang, H.X. Zhao, D.S. Chen, B.N. Zhong, J.C. Wang, T. Qi, Production of rutile TiO2 pigment from titanium slag obtained by hydrochloric acid leaching of vanadium-bearing titanomagnetite, Ind. Eng. Chem. Res. 53(2014) 70-77. [3] Y. Wang, J. Li, L. Wang, T.Y. Xue, T. Qi, Preparation of rutile titanium dioxide white pigment via doping and calcination of metatitanic acid obtained by the NaOH molten salt method, Ind. Eng. Chem. Res. 49(2010) 7693-7696. [4] Y.L. Lin, T.J. Wang, J. Yong, Surface characteristics of hydrous silica-coated TiO2 particles, Powder Technol. 123(2002) 194-198. [5] H.X. Wu, T.J. Wang, Y. Jin, Film-coating process of hydrated alumina on TiO2 particles, Ind. Eng. Chem. Res. 45(2006) 1337-1342. [6] H.X. Wu, T.J. Wang, Y. Jin, Morphology "phase diagram" of the hydrous alumina coating on TiO2 particles during aqueous precipitation, Ind. Eng. Chem. Res. 45(2006) 5274-5278. [7] Y.M. Liu, C. Ge, M. Ren, H.B. Yin, A.L. Wang, D.Z. Zhang, C.Z. Liu, J. Chen, H. Feng, H. Yao, T.S. Jiang, Effects of coating parameters on the morphology of SiO2-coated TiO2 and the pigmentary properties, Appl. Surf. Sci. 254(2008) 2809-2819. [8] Y.S. Zhang, H.B. Yin, A.L. Wang, C. Liu, L.B. Yu, T.S. Jiang, Y. Hang, Evolution of zirconia coating layer on rutile TiO2 surface and the pigmentary property, J. Phys. Chem. Solids 71(2010) 1458-1466. [9] J. Li, T.C. Sun, Y. Wang, L.N. Wang, J.K. Qu, T. Qi, Preparation and film-growing mechanism of hydrous zirconia coated on TiO2, Int. J. Miner. Metall. Mater. 17(2010) 660-667. [10] B.X. Wei, L. Zhao, T.J. Wang, H. Gao, H.X. Wu, Y. Jin, Photo-stability of TiO2 particles coated with several transition metal oxides and its measurement by rhodamine-B degradation, Adv. Powder Technol. 24(2013) 708-713. [11] H. Gao, B. Qiao, T.J. Wang, D.Z. Wang, Y. Jin, Cerium oxide coating of titanium dioxide pigment to decrease its photocatalytic activity, Ind. Eng. Chem. Res. 53(2014) 189-197. [12] X.H. Liang, A.W. Weimer, Photoactivity passivation of TiO2 nanoparticles using molecular layer deposited (MLD) polymer films, J. Nanopart. Res. 12(2010) 135-142. [13] B.X. Wei, L. Zhao, T.J. Wang, Y. Jin, Detrimental thixotropic thinning of filter cake of SiO2-Al2O3 composite coated TiO2 particles and its control, Ind. Eng. Chem. Res. 50(2011) 13799-13804. [14] Y.S. Zhang, H.B. Yin, A.L. Wang, M. Ren, Z.M. Gu, Y.M. Liu, Y.T. Shen, L.B. Yu, T.S. Jiang, Deposition and characterization of binary Al2O3/SiO2 coating layers on the surfaces of rutile TiO2 and the pigmentary properties, Appl. Surf. Sci. 257(2010) 1351-1360. [15] E. Jang, K. Sridharan, Y.M. Park, T.J. Park, Eliminated phototoxicity of TiO2 particles by an atomic-layer-deposited Al2O3 coating layer for UV-protection applications, Chemistry 22(2016) 12022-12026. [16] J. Guo, S.J. Yuan, Y.Y. Yu, J.R. van Ommen, H. Van Bui, B. Liang, Room-temperature pulsed CVD-grown SiO2 protective layer on TiO2 particles for photocatalytic activity suppression, RSC Adv. 7(2017) 4547-4554. [17] Q.H. Powell, T.T. Kodas, B.M. Anderson, Coating of TiO2 particles by chemical vapor deposition of SiO2, Chem. Vap. Depos. 2(51) (1996) 179-181. [18] D.J. Simpson, A. Thilagam, G.P. Cavallaro, K. Kaplun, A.R. Gerson, SiO2 coated pure and doped titania pigments:Low temperature CVD deposition and quantum chemical study, Phys. Chem. Chem. Phys. 13(47) (2011) 21132-21138. [19] H. Azizpour, M. Talebi, F.D. Tichelaar, R. Sotudeh-Gharebagh, J. Guo, J.R. van Ommen, N. Mostoufi, Effective coating of titania nanoparticles with alumina via atomic layer deposition, Appl. Surf. Sci. 426(2017) 480-496. [20] D. Valdesueiro, M. Gmh, M.T. Kreutzer, J.R. van Ommen, Gas-phase deposition of ultrathin aluminium oxide films on nanoparticles at ambient conditions, Materials 8(2015) 1249-1263. [21] J. Guo, B. Hao Van, D. Valdesueiro, S.J. Yuan, B. Liang, J.R. van Ommen, Suppressing the photocatalytic activity of TiO2 nanoparticles by extremely thin Al2O3 films grown by gas-phase deposition at ambient conditions, Nanomaterials 8(2018) 61(19). [22] B. Vidjayacoumar, D.J.H. Emslie, S.B. Clendenning, J.M. Blackwell, J.F. Britten, A. Rheingold, Investigation of AlMe3, BEt3, and ZnEt2 as co-reagents for lowtemperature copper metal ALD/pulsed-CVD, Chem. Mater. 22(2010) 4844-4853. [23] Y.Y. Yu, Y.M. Zhu, J. Guo, H.R. Yue, H.G. Zhang, C.J. Liu, S.Y. Tang, B. Liang, Suppression of TiO2 photocatalytic activity by low-temperature pulsed CVD-grown SnO2 protective layer, Ind. Eng. Chem. Res. 57(2018) 8679-8688. [24] J. Aarik, A. Aidla, A.A. Kiisler, T. Uustare, V. Sammelselg, Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition, Thin Solid Films 305(1997) 270-273. [25] G.D. Parfitt, K.S.W. Sing, Characterization of powder surfaces, Academic Press, New York, 1976. [26] E. Palomares, J.N. Clifford, S.A. Haque, A. Thierry Lutz, J.R. Durrant, Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers, J. Am. Chem. Soc. 125(2003) 475-482. [27] C. Armistead, A. Tyler, F. Hambleton, S. Mitchell, J.A. Hockey, Surface hydroxylation of silica, J. Phys. Chem. 73(1969) 3947-3953. [28] D. Longrie, D. Deduytsche, C. Detavernier, Reactor concepts for atomic layer deposition on agitated particles:A review, J. Vac. Sci. Technol. A 32(2014), 010802. [29] S.G. Zhang, L. Li, Y.Z. Liu, Q.L. Zhang, TiO2-SA-Arg nanoparticles stabilized pickering emulsion for photocatalytic degradation of nitrobenzene in a rotating annular reactor, Chin. J. Chem. Eng. 25(2017) 223-231. [30] F.M. Wang, Z.S. Shi, F. Gong, J.T. Jiu, A. Motonari, Morphology control of anatase TiO2 by surfactant-assisted hydrothermal method, Chin. J. Chem. Eng. 15(2007) 754-759. [31] J.H. Shen, Y.H. Zhu, X.L. Yang, C.Z. Li, Magnetic composite microspheres with exposed {001} faceted TiO2 shells:A highly active and selective visible-light photocatalyst, J. Mater. Chem. 22(26) (2012) 13341-13347. [32] G.X. Song, Z.Y. Chu, W.Q. Jin, H.Q. Sun, Enhanced performance of g-C3N4/TiO2 photocatalysts for degradation of organic pollutants under visible light, Chin. J. Chem. Eng. 23(2015) 1326-1334. [33] J.B. Metson, Charge compensation and binding energy referencing in XPS analysis, Surf. Interface Anal. 27(1999) 1069-1072. [34] Q.H. Tian, Z.X. Zhang, L. Yang, S.I. Hirano, Encapsulation of SnO2 nanoparticles into hollow TiO2 nanowires as high performance anode materials for lithium ion batteries, J. Power Sources 253(2014) 9-16. [35] X.Y. Hou, Y.J. Hu, H. Jiang, Y.F. Li, W.G. Li, C.Z. Li, One-step synthesis of SnOx nanocrystalline aggregates encapsulated by amorphous TiO2 as an anode in Li-ion battery, J. Mater. Chem. A 3(18) (2015) 9982-9988. [36] A.S. Tselesh, Anodic behaviour of tin in citrate solutions:The IR and XPS study on the composition of the passive layer, Thin Solid Films 516(2008) 6253-6260. [37] M. Ren, H.B. Yin, Z.Z. Lu, A.L. Wang, L.B. Yu, T.S. Jiang, Evolution of rutile TiO2 coating layers on lamellar sericite surface induced by Sn4+ and the pigmentary properties, Powder Technol. 204(2010) 249-254. [38] L.J. Luo, Y. Yang, M. Xiao, L.C. Bian, B. Yuan, Y.J. Liu, F.Z. Jiang, X.J. Pan, A novel biotemplated synthesis of TiO2/wood charcoal composites for synergistic removal of bisphenol A by adsorption and photocatalytic degradation, Chem. Eng. J. 262(2015) 1275-1283. [39] Y. Duval, J.A. Mielczarski, O.S. Pokrovsky, E. Mielczarski, J.J. Ehrhardt, Evidence of the existence of three types of species at the quartz-aqueous solution interface at pH 0-10:XPS surface group quantification and surface complexation modeling, J. Phys. Chem. B 106(2002) 2937-2945. [40] X.L. Wang, S.O. Pehkonen, J. Rämö, M. Väänänen, J.G. Highfield, K. Laasonen, Experimental and computational studies of nitrogen doped Degussa P25 TiO2:Application to visible-light driven photo-oxidation of as As (III), Catal. Sci. Technol. 2(2012) 784-793. [41] Z.W. Zhao, W.D. Zhang, X.S. Lv, Y.J. Sun, F. Dong, Y.X. Zhang, Noble metal-free Bi nanoparticles supported on TiO2 with plasmon-enhanced visible light photocatalytic air purification, Environ. Sci.:Nano 3(2016) 1306-1317. [42] R.D. Chekuri, S.R. Tirukkovalluri, One step synthesis and characterization of copper doped sulfated titania and its enhanced photocatalytic activity in visible light by degradation of methyl orange, Chin. J. Chem. Eng. 24(4) (2016) 475-483. [43] H.B. Jiang, Q. Cuan, C.Z. Wen, J. Xing, D. Wu, X.Q. Gong, C.Z. Li, H.G. Yang, Anatase TiO2 crystals with exposed high-index facets, Angew. Chem. Int. Ed. 50(16) (2011) 3764-3768. [44] J.B. Mu, B. Chen, Z.C. Guo, M.Y. Zhang, Z.Y. Zhang, C.L. Shao, Y.C. Liu, Tin oxide (SnO2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures:Controlled fabrication and high capacitive behavior, J. Colloid Interface Sci. 356(2011) 706-712. [45] A. Groza, A. Surmeian, C. Diplasu, C. Negrila, B. Mihalcea, M. Ganciu, Infrared and Xray photoelectron spectroscopy in surface characterization of polydimethylsiloxane thin films generated on metallic substrates in multipoints to plane corona discharges, Rom. J. Phys. 61(2016) 648-656. [46] L. Zhang, Y.R. Hong, T.S. Zhang, C.Z. Li, A novel approach to prepare PBT nanocomposites with elastomer-modified SiO2 particles, Polym. Compos. 30(5) (2009) 673-679. [47] S.R. Wang, F. Teng, Y.X. Zhao, Effect of the molecular structure and surface charge of a bismuth catalyst on the adsorption and photocatalytic degradation of dye mixtures, RSC Adv. 5(2015) 76588-76598. [48] A. Farhadi, M.R. Mohammadi, M. Ghorbani, On the assessment of photocatalytic activity and charge carrier mechanism of TiO2@SnO2 core-shell nanoparticles for water decontamination, J. Photochem. Photobiol. A 338(2017) 171-177. [49] A.L. Linsebigler, G. Lu, J.T. Yates Jr., Photocatalysis on TiO2 surfaces:Principles, mechanisms, and selected results, Chem. Rev. 95(1995) 735-758. [50] R.J. Dillon, J.B. Joo, F. Zaera, Y.D. Yin, C.J. Bardeen, Correlating the excited state relaxation dynamics as measured by photoluminescence and transient absorption with the photocatalytic activity of Au@TiO2 core-shell nanostructures, Phys. Chem. Chem. Phys. 15(2013) 1488-1496. [51] F. Kan, S. Izumi, T. Ohno, M. Matsumura, Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions, J. Photochem. Photobiol. A 132(2000) 99-104. [52] D. Stockwell, Y. Yang, J. Huang, C. Anfuso, Z. Huang, T. Lian, Comparison of electrontransfer dynamics from coumarin 343 to TiO2, SnO2, and ZnO nanocrystalline thin films:Role of interface-bound charge-separated pairs, J. Phys. Chem. C 114(2010) 6560-6566. [53] M.H. Zhou, J.G. Yu, S.W. Liu, P.C. Zhai, L. Jiang, Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method, J. Hazard. Mater. 154(2008) 1141-1148. [54] C.L. Xiang, C.A. Okonkwo, Q. Xiong, L.Q. Wang, L.S. Jia, A novel TiO2 film photoanode decorated with spirulina-derived residual groups for enhanced photocurrent in dyesensitized solar cells, Sol. Energy 134(2016) 461-467. [55] T. Hong, Y.H. Sun, W.P. Jepson, Study on corrosion inhibitor in large pipelines under multiphase flow using EIS, Corros. Sci. 44(2002) 101-112. [56] S.Y. Lu, M. Jin, Y. Zhang, Y.B. Niu, J.C. Gao, C.M. Li, Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors, Adv. Energy Mater. 8(2018), 1702545. [57] W.W. He, H.K. Kim, W.G. Warner, D. Melka, J.H. Callahan, J.J. Yin, Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity, J. Am. Chem. Soc. 136(2014) 750-757. [58] M.J. Chen, Y. Li, Z.Y. Wang, Y.X. Gao, Y. Huang, J.J. Cao, W. Ho, S. Lee, Controllable synthesis of core-shell Bi@amorphous Bi2O3 nanospheres with tunable optical and photocatalytic activity for NO removal, Ind. Eng. Chem. Res. 56(2017) 10251-10258. [59] X.Y. Pan, N. Zhang, X.Z. Fu, Y.J. Xu, Selective oxidation of benzyl alcohol over TiO2 nanosheets with exposed {001} facets:Catalyst deactivation and regeneration, Appl. Catal. A Gen. 453(2013) 181-187. [60] H.C. Ma, M. Zhao, H.M. Xing, Y.H. Fu, X.F. Zhang, X.L. Dong, Synthesis and enhanced photoreactivity of metallic Bi-decorated BiOBr composites with abundant oxygen vacancies, J. Mater. Sci. Mater. Electron. 26(2015) 10002-10011. |