[1] T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, 2nd edition R.T. Edwards, USA, 2005. [2] S.V. Apte, K. Mahesh, P. Moin, J.C. Oefelein, Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor, Int. J. Multiphas Flow 29(8) (2003) 1311-1331. [3] F. Yeh, U. Lei, On the motion of small particles in a homogeneous isotropic turbulent flow, Phys. Fluids 3(11) (1991) 2571-2586. [4] C.Y. Yang, U. Lei, The role of the turbulent scales in the settling velocity of heavy particles in homogeneous isotropic turbulence, J. Fluid Mech. 371(1998) 179-205. [5] V. Armenio, U. Piomelli, V. Fiorotto, Effect of the subgrid scales on particle motion, Phys. Fluids 11(10) (1999) 3030-3042. [6] P. Fede, O. Simonin, Numerical study of the subgrid fluid turbulence effects on the statistics of heavy colliding particles, Phys. Fluids 18(4) (2006), 045103. [7] C. Marchioli, M.V. Salvetti, A. Soldati, Some issues concerning large-eddy simulation of inertial particle dispersion in turbulent bounded flows, Phys. Fluids 20(4) (2008), 040603. [8] J. Urzay, M. Bassenne, G. Park, P. Moin, "Characteristic regimes of subgrid-scale coupling in LES of particle-laden turbulent flows", Stanford University, Center for Turbulence Research, Annu. Res. Briefs (2014) 3-13. [9] J. Pozorski, J. Minier, On the Lagrangian turbulent dispersion models based on the Langevin equation, Int. J. Multiphas Flow 24(6) (1998) 913-945. [10] J. Minier, E. Peirano, The PDF approach to turbulent polydispersed two-phase flows, Phys. Rep. 352(1-3) (2001) 1-214. [11] P. Fede, O. Simonin, P. Villedieu, K.D. Squires, Stochastic modeling of the turbulent subgrid fluid velocity along inertial particle trajectories, Proceeding of the 2006 Summer Program, Stanford University 2006, pp. 247-258. [12] B. Shotorban, F. Mashayek, A stochastic model for particle motion in large-eddy simulation, J. Turbul. 7(18) (2006) 1-13. [13] A.S. Berrouk, D. Laurence, J.J. Riley, D.E. Stock, Stochastic modelling of inertial particle dispersion by subgrid motion for LES of high Reynolds number pipe flow, J. Turbul. 8(50) (2007) 1-20. [14] J. Pozorski, S.V. Apte, Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion, Int. J. Multiphas Flow 35(2) (2009) 118-128. [15] L. Wang, D.E. Stock, Dispersion of heavy particles by turbulent motion, J. Atmos. Sci. 50(13) (1993) 1897-1913. [16] G. Jin, G. He, L. Wang, J. Zhang, Subgrid scale fluid velocity timescales seen by inertial particles in large-eddy simulation of particle-laden turbulence, Int. J. Multiphase Flow 36(5) (2010) 432-437. [17] G. Jin, G. He, A nonlinear model for the subgrid timescale experienced by heavy particles in large eddy simulation of isotropic turbulence with a stochastic differential equation, New J. Phys. 15(3) (2013), 035011. [18] Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, A. Szalay, G. Eyink, A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence, J. Turbul. 9(31) (2008) 1-29. [19] L.D. Smoot, P.J. Smith, Coal Combustion and Gasification, Plenum Press, New York, 1985. [20] D.S. Lemons, An Introduction to Stochastic Processes in Physics, The Johns Hopkins University Press, USA, 2002. [21] S.B. Pope, Turbulent Flows, Cambridge University Press, UK, 2000. [22] P.K. Yeung, Lagrangian characteristics of turbulence and scalar transport in direct numerical simulations, J. Fluid Mech. 427(2001) 241-274. [23] W.C. Reade, L.R. Collins, Effect of preferential concentration on turbulent collision rates, Phys. Fluids 12(10) (2000) 2530-2540. [24] M.J. Cernick, S.W. Tullis, M.F. Lightstone, Particle subgrid scale modelling in largeeddy simulations of particle-laden turbulence, J. Turbul. 16(2) (2015) 101-135. |