[1] http://www.chyxx.com/research/201609/452665.html(10/11/2018). [2] Z. Huang, F. Xie, Y. Ma, Ultrasonic recovery of copper and iron through the simultaneous utilization of Printed Circuit Boards (PCB) spent acid etching solution and PCB waste sludge, J. Hazard. Mater. 185(2011) 155-161. [3] A. Agrawal, K.K. Sahu, An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries, J. Hazard. Mater. 171(2009) 61-75. [4] Q. Yang, N.M. Kocherginsky, Copper recovery and spent ammoniacal etchant regeneration based on hollow fiber supported liquid membrane technology:From benchscale to pilot-scale tests, J. Membr. Sci. 286(2006) 301-309. [5] C.W. Lam, S. Lim, J.M. Schoenung, Environmental and risk screening for prioritizing pollution prevention opportunities in the U.S. printed wiring board manufacturing industry, J. Hazard. Mater. 189(2011) 315-322. [6] Z. Yang, C. Huang, X. Ji, et al., A new electrolytic method for on-site regeneration of acidic copper (II) chloride etchant in printed circuit board production, Int. J. Electrochem. Sci. 8(2013) 6258-6268. [7] C. Peng, L. Chai, C. Tang, et al., Feasibility and enhancement of copper and ammonia removal from wastewater using struvite formation:A comparative research, J. Chem. Technol. Biotechnol. 92(2017) 325-333. [8] K. Wieszczycka, M. Kaczerewska, M. Krupa, et al., Solvent extraction of copper (II) from ammonium chloride and hydrochloric acid solutions with hydrophobic pyridineketoximes, Sep. Purif. Technol. 95(2012) 157-164. [9] A. Wojciechowska, K. Wieszczycka, I. Wojciechowska, Efficient recovery of copper from aqueous solutions with pyridine extractants (oxime, ketone) and their quaternary pyridinium salts, Sep. Purif. Technol. 185(2017) 103-111. [10] S. Fogarasi, F. Imre-Lucaci, Á. Imre-Lucaci, et al., Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation, J. Hazard. Mater. 273(2014) 215-221. [11] T. Oishi, M. Yaguchi, K. Koyama, et al., Hydrometallurgical process for the recycling of copper using anodic oxidation of cuprous ammine complexes and flow-through electrolysis, Electrochim. Acta 53(2008) 2585-2592. [12] R.K.B. Karlsson, A. Cornell, L.G.M. Pettersson, The electrocatalytic properties of doped TiO2, Electrochim. Acta 180(2015) 514-527. [13] M. Lee, J. Ahn, J. Ahn, Recovery of copper, tin and lead from the spent nitric etching solutions of printed circuit board and regeneration of the etching solution, Hydrometallurgy 70(2003) 23-29. [14] M. Yu, X. Zeng, Q. Song, et al., Examining regeneration technologies for etching solutions:A critical analysis of the characteristics and potentials, J. Clean. Prod. 113(2016) 973-980. [15] L. Yan, D. Li, S. Li, et al., Balancing osmotic pressure of electrolytes for nanoporous membrane vanadium redox flow battery with a draw solute, ACS Appl. Mater. Inter. 8(2016) 35289-35297. [16] L. Cui, P. Ding, M. Zhou, et al., Energy efficiency improvement on in situ generating H2O2 in a double-compartment ceramic membrane flow reactor using cerium oxide modified graphite felt cathode, Chem. Eng. J. 330(2017) 1316-1325. [17] E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry, Chem. Rev. 109(2009) 6570-6631. [18] A.D. Pozzo, L.D. Palma, C. Merli, et al., An experimental comparison of a graphite electrode and a gas diffusion electrode for the cathodic production of hydrogen peroxide, J. Appl. Electrochem. 35(2005) 413-419. [19] E. Isarain-Chávez, C. Arias, P.L. Cabot, et al., Mineralization of the drug β-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H2O2 electrogeneration combined with a carbon-felt cathode for Fe2+ regeneration, Appl. Catal. B Environ. 96(2010) 361-369. [20] W. Gu, C. Liu, J. Tang, et al., Improving zinc electrodeposition in ammoniacal electrolytes with the saturated dissolved methyltrioctylammonium chloride, Hydrometallurgy 175(2018) 43-51. [21] D.Y. Butylskii, S.A. Mareev, N.D. Pismenskaya, et al., Phenomenon of two transition times in chronopotentiometry of electrically inhomogeneous ion exchange membranes, Electrochim. Acta 273(2018) 289-299. [22] K. Izumiya, E. Akiyama, H. Habazaki, et al., Anodically deposited manganese oxide and manganese±tungsten oxide electrodes for oxygen evolution from seawater, Electrochim. Acta 43(1998) 3303-3312. [23] K. Macounová, M. Makarova, J. Jirkovský, et al., Parallel oxygen and chlorine evolution on Ru1-xNixO2-y nanostructured electrodes, Electrochim. Acta 53(2008) 6126-6134. [24] M. García-Mota, A. Vojvodic, F. Abild-Pedersen, et al., Electronic origin of the surface reactivity of transition-metal-doped TiO2(110), J. Phys. Chem. C 117(2012) 460-465. [25] T. Wang, W. Xu, H. Wang, Ternary NiCoFe layered double hydroxide nanosheets synthesized by cation exchange reaction for oxygen evolution reaction, Electrochim. Acta 257(2017) 118-127. [26] Y. Chang, L. Deng, X. Meng, et al., Closed-loop electrochemical recycling of spent copper (II) from etchant wastewater using a carbon nanotube modified graphite felt anode, Environ. Sci. Technol. 52(2018) 5940-5948. [27] D. Iannazzo, A. Pistone, I. Ziccarelli, et al., Removal of heavy metal ions from wastewaters using dendrimer-functionalized multi-walled carbon nanotubes, Environ. Sci. Pollut. R. 24(2017) 14735-14747. [28] S.A. Kosa, G. Al-Zhrani, M. Abdel Salam, Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline, Chem. Eng. J. 181-182(2012) 159-168. [29] L.F. Castañeda, F.C. Walsh, J.L. Nava, et al., Graphite felt as a versatile electrode material:Properties, reaction environment, performance and applications, Electrochim. Acta 258(2017) 1115-1139. [30] C. Corbella, J. Puigagut, Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells:Influence of anode material and external resistance, Sci. Total Environ. 631-632(2018) 1406-1414. [31] W. Yang, M. Zhou, L. Liang, Highly efficient in-situ metal-free electrochemical advanced oxidation process using graphite felt modified with N-doped graphene, Chem. Eng. J. 338(2018) 700-708. [32] L. Cifuentes, J.M. Casas, J. Simpson, Modelling the effect of temperature and time on the performance of a copper electrowinning cell based on reactive electrodialysis, Chem. Eng. Sci. 63(2008) 1117-1130. [33] W. Wang, S. Chen, J. Li, et al., Fabrication of catalyst coated membrane with screen printing method in a proton exchange membrane fuel cell, Int. J. Hydrogen Energ. 40(2015) 4649-4658. [34] D. Li, W. Jing, S. Li, et al., Electric field-controlled ion transport in TiO2 nanochannel, ACS Appl. Mater. Inter. 7(2015) 11294-11300. [35] H. Luo, C. Li, C. Wu, et al., In situ electrosynthesis of hydrogen peroxide with an improved gas diffusion cathode by rolling carbon black and PTFE, RSC Adv. 5(2015) 65227-65235. |