[1] I.T. Togrul, D. Pehlivan, The performance of a solar air heater with conical concentrator under forced convection, Int. J. Therm. Sci. 42(2003) 571-581. [2] P. Promvonge, Heat transfer and pressure drop in a channel with multiple 60° V-baffles, Int. Commun. Heat Mass Transf. 37(7) (2010) 835-840. [3] S. Skullong, P. Promvonge, C. Thianpong, N. Jayranaiwachira, M. Pimsarn, Heat transfer augmentation in a solar air heater channel with combined winglets and wavy grooves on absorber plate, Appl. Therm. Eng. 122(2017) 268-284. [4] S. Skullong, Performance enhancement in a solar air heater duct with inclined ribs mounted on the absorber, J Res. Appl. Mech. Eng. 5(2017) 55-64. [5] S. Skullong, P. Promthaisong, P. Promvonge, C. Thianpong, M. Pimsarn, Thermal performance in solar air heater with perforated-winglet-type vortex generator, Sol. Energy 170(2018) 1101-1117. [6] A. Kumar, A. Layek, Thermo-hydraulic performance of solar air heater having twisted rib over the absorber plate, Int. J. Therm. Sci. 133(2018) 181-195. [7] S. Eiamsa-ard, P. Promvonge, Influence of double-sided delta-wing tape insert with alternate-axes on flow and heat transfer characteristics in a heat exchanger tube, Chin. J. Chem. Eng. 19(3) (2011) 410-423. [8] S. Eiamsa-ard, N. Koolnapadol, P. Promvonge, Heat transfer behavior in a square duct with tandem wire coil element insert, Chin. J. Chem. Eng. 20(5) (2012) 863-869. [9] S. Skullong, S. Kwankaomeng, C. Thianpong, P. Promvonge, Thermal performance of turbulent flow in a solar air heater channel with rib-groove turbulators, Int. Commun. Heat Mass Transf. 50(2014) 34-43. [10] P. Promvonge, Thermal performance in square-duct heat exchanger with quadruple V-finned twisted tapes, Appl. Therm. Eng. 91(2015) 298-307. [11] W. Noothong, S. Suwannapan, C. Thianpong, P. Promvonge, Enhanced heat transfer in a heat exchanger square-duct with discrete V-finned tape inserts, Chin. J. Chem. Eng. 23(2015) 490-498. [12] S. Chokphoemphun, M. Pimsarn, C. Thianpong, P. Promvonge, Heat transfer augmentation in a circular tube with winglet vortex generators, Chin. J. Chem. Eng. 23(2015) 605-614. [13] S. Chokphoemphun, M. Pimsarn, C. Thianpong, P. Promvonge, Thermal performance of tubular heat exchanger with multiple twisted-tape inserts, Chin. J. Chem. Eng. 23(2015) 755-762. [14] S. Skullong, P. Promvonge, N. Jayranaiwachira, C. Thianpong, Experimental and numerical heat transfer investigation in a tubular heat exchanger with delta-wing tape inserts, Chem. Eng. Process. Process Intensif. 109(2016) 164-177. [15] M. Awais, A.A. Bhuiyan, Heat and mass transfer for compact heat exchanger (CHXs) design:A state-of-the-art review, Int. J. Heat Mass Transf. 127(2018) 359-380. [16] M. Awais, A.A. Bhuiyan, Heat transfer enhancement using different types of vortex generators (VGs):A review on experimental and numerical activities, Therm. Sci. Eng. Progress 5(2018) 524-545. [17] H.L. Liu, H. Li, Y.L. He, Z.T Chen, Heat transfer and flow characteristics in a circular tube fitted with rectangular winglet vortex generators, Int. J. Heat Mass Transf. 126(2018) 989-1006. [18] H.L. Liu, C.C. Fan, Y.L. He, D.S. Nobes, Heat transfer and flow characteristics in a rectangular channel with combined delta winglet inserts, Int. J. Heat Mass Transf. 134(2019) 149-165. [19] M. Awais, A.A. Bhuiyan, Enhancement of thermal and hydraulic performance of compact finned-tube heat exchanger using vortex generators (VGs):A parametric study, Int. J. Therm. Sci. 140(2019) 154-166. [20] C.W. Leung, S. Chen, T.T. Wong, S.D. Probert, Forced convection and pressure drop in a horizontal triangular-sectional duct with V-grooved (i.e. orthogonal to the mean flow) inner surfaces, Appl. Energy 66(2000) 199-211. [21] S. Skullong, C. Thianpong, P. Promvonge, Effects of rib size and arrangement on forced convective heat transfer in a solar air heater channel, Heat Mass Transf. 51(2015) 1475-1485. [22] P. Promvonge, S. Skullong, S. Kwankaomeng, C. Thiangpong, Heat transfer in square duct fitted diagonally with angle-finned tape-Part 1:Experimental study, Int. Commun. Heat Mass Transf. 39(2012) 617-624. [23] A. Priyam, P. Chand, Thermal and thermohydraulic performance of wavy finned absorber solar air heater, Sol. Energy 130(2016) 250-259. [24] D. Sahel, H. Ameur, R. Benzeguir, Y. Kamla, Enhancement of heat transfer in a rectangular channel with perforated baffles, Appl. Therm. Eng. 101(2016) 156-164. [25] P. Promvonge, S. Kwankaomeng, Periodic laminar flow and heat transfer in a channel with 45° staggered V-baffles, Int. Commun. Heat Mass Transf. 37(2010) 841-849. [26] S. Skullong, P. Promvonge, C. Thianpong, M. Pimsarn, Thermal performance in solar air heater channel with combined wavy-groove and perforated-delta wing vortex generators, Appl. Therm. Eng. 100(2016) 611-620. [27] M. Fiebig, Embedded vortices in internal flow:heat transfer and pressure loss enhancement, Int. J. Heat Fluid Flow 16(1995) 376-388. [28] D.X. Jin, Y.P. Lee, D.-Y. Lee, Effects of the pulsating flow agitation on the heat transfer in a triangular grooved channel, Int. J. Heat Mass Transf. 50(2007) 3062-3071. [29] S. Eiamsa-ard, P. Promvonge, Numerical study on heat transfer of turbulent channel flow over periodic grooves, Int. Commun. Heat Mass Transf. 35(2008) 844-852. [30] X.-Y. Tang, G. Jiang, G. Cao, Parameters study and analysis of turbulent flow and heat transfer enhancement in narrow channel with discrete grooved structures, Chem. Eng. Res. Des. 93(2015) 232-250. [31] H.H. Xia, G.H. Tang, Y. Shi, W.Q. Tao, Simulation of heat transfer enhancement by longitudinal vortex generators in dimple heat exchangers, Energy 74(2014) 27-36. [32] J. Liu, Y. Song, G. Xie, B. Sunden, Numerical modeling flow and heat transfer in dimpled cooling channels with secondary hemispherical protrusions, Energy 79(2015) 1-19. [33] P. Promvonge, C. Thianpong, Thermal performance assessment of turbulent channel flows over different shaped ribs, Int. Commun. Heat Mass Transf. 35(2008) 1327-1334. [34] C. Thianpong, T. Chompookham, S. Skullong, P. Promvonge, Thermal characterization of turbulent flow in a channel with isosceles triangular ribs, Int. Commun. Heat Mass Transf. 36(2009) 712-717. [35] R. Karwa, Experimental studies of augmented heat transfer and friction in asymmetrically heated rectangular ducts with ribs on the heated wall in transverse, inclined, V-continuous and V-discrete pattern, Int. J. Heat Mass Transf. 30(2) (2003) 241-250. [36] N.K. Pandey, V.K. Bajpai, Varun, Experimental investigation of heat transfer augmentation using multiple arcs with gap on absorber plate of solar air heater, Sol. Energy 134(2016) 314-326. [37] S. Tamna, S. Skullong, C. Thianpong, P. Promvonge, Heat transfer behaviors in a solar air heater channel with multiple V-baffle vortex generators, Sol. Energy 110(2014) 720-735. [38] M.C. Gentry, A.M. Jacobi, Heat transfer enhancement by delta-wing vortex generators on a flat plate:vortex interactions with the boundary layer, Exp. Thermal Fluid Sci. 14(1997) 231-242. [39] G. Zhou, Q. Ye, Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators, Appl. Therm. Eng. 37(2012) 241-248. [40] G. Zhou, Z. Feng, Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes, Int. J. Therm. Sci. 78(2014) 26-35. [41] S. Skullong, P. Promvonge, Experimental investigation on turbulent convection in solar air heater channel fitted with delta winglet vortex generator, Chin. J. Chem. Eng. 22(1) (2014) 1-10. [42] P. Promvonge, T. Chompookham, S. Kwankaomeng, C. Thianpong, Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generators, Energy Convers. Manag. 51(2010) 1242-1249. [43] T. Chompookham, C. Thianpong, S. Kwankaomeng, P. Promvonge, Heat transfer augmentation in a wedge-ribbed channel using winglet vortex generators, Int. Commun. Heat Mass Transf. 37(2010) 163-169. [44] P. Promvonge, C. Khanoknaiyakarn, S. Kwankaomeng, C. Thianpong, Thermal behavior in solar air heater channel fitted with combined rib and delta-winglet, Int. Commun. Heat Mass Transf. 38(2011) 749-756. [45] F. Incropera, P.D. Dewitt, Introduction to Heat Transfer 5th edition, John Wiley & Sons Inc., 2006 [46] ASME, Standard measurement of fluid flow in pipes using orifice, nozzle and venturi. ASME MFC-3M-1984, United engineering center 345 east 47th street, N. Y., (1984) 1-56. [47] P. Promvonge, S. Skullong, Heat transfer in solar receiver heat exchanger with combined punched-V-ribs and chamfer-V-grooves, Int. J. Heat Mass Transf. 143(2019), 118486. [48] R.L. Webb, Principles of Enhanced Heat Transfer, second edition Taylor & Francis, New York, 2005. [49] ANSI/ASME, Measurement uncertainty, PTC 19, vols. 1-1985, Part I, USA, 1986. |