[1] F.S. Mederos, J. Ancheyta, I. Elizalde, Dynamic modeling and simulation of hydrotreating of gas oil obtained from heavy crude oil, Appl. Catal. A 425(2012) 13-27. [2] G. Marroquın-Sánchez, J. Ancheyta-Juárez, Catalytic hydrotreating of middle distillates blends in a fixed-bed pilot reactor, Appl. Catal. A 207(2001) 407-420. [3] F.S. Mjalli, O.U. Ahmed, T. Al-Wahaibi, Y. Al-Wahaibi, I.M. Alnashef, Deep oxidative desulfurization of liquid fuels, Rev. Chem. Eng. 30(2014) 337-378. [4] L.C. Green, S.R. Armstrong, Particulate matter in ambient air and mortality:Toxicologic perspectives, Regul. Toxicol. Pharmacol. 38(2003) 326-335. [5] R.F. Sawyer, R.A. Harley, S.H. Cadle, J.M. Norbeck, R. Slott, H.A. Bravo, Mobile sources critical review:1998 NARSTO assessment, Atmos. Environ. 34(2000) 2161-2181. [6] M. Breysse, G. Djega-Mariadassou, S. Pessayre, C. Geantet, M. Vrinat, G. Pérot, M. Lemaire, Deep desulfurization:Reactions, catalysts and technological challenges, Catal. Today 84(2003) 129-138. [7] I. Elizalde, F.S. Mederos, C. Monterrubio, N. Casillas, H. Díaz, F. Trejo, Mathematical modeling and simulation of an industrial adiabatic trickle-bed reactor for upgrading heavy crude oil by hydrotreatment process, React. Kinet., Mech. Cat 126(2018) 31-48. [8] K. Jeong, T. Kim, J. Kim, H. Chae, C. Kim, Y. Park, S. Jeong, Selective oxidation of refractory sulfur compounds for the production of low sulfur transportation fuel, Korean J. Chem. Eng. 30(2013) 509-517. [9] I.V. Babich, J.A. Moulijn, Science and technology of novel processes for deep desulfurization of oil refinery streams:A review, Fuel 82(2003) 607-631. [10] B. Pawelec, R.M. Navarro, J.M. Campos-Martin, J.L. Fierro, Towards near zero-sulfur liquid fuels:A perspective review, Catal. Sci. Technol. 1(2012) 23-42. [11] M.J. Macías, J. Ancheyta, Simulation of an isothermal hydrodesulfurization small reactor with different catalyst particle shapes, Catal. Today 98(2004) 243-252. [12] F.S. Mederos, J. Ancheyta, J. Chen, Review on criteria to ensure ideal behaviors in trickle-bed reactors, Appl. Catal. A 355(2009) 1-19. [13] C.J. Calderón, J. Ancheyta, Dynamic modeling and simulation of a slurry-phase reactor for hydrotreating of oil fractions, Energy Fuel 31(2017) 5691-5700. [14] A. Quitian, J. Ancheyta, Experimental methods for developing kinetic models for hydrocracking reactions with slurry-phase catalyst using batch reactors, Energy Fuel 30(2017) 4419-4437. [15] C.J. Calderón, J. Ancheyta, Modeling of slurry-phase reactors for hydrocracking of heavy oils, Energy Fuel 30(2016) 2525-2543. [16] C.J. Calderón, J. Ancheyta, Modeling of CSTR and SPR small-scale isothermal reactors for heavy oil hydrocracking and hydrotreating, Fuel 216(2018) 852-860. [17] M. Bhaskar, G. Valavarasu, B. Sairam, K.S. Balaraman, K. Balu, Three-phase reactor model to simulate the performance of pilot-plant and industrial trickle-bed reactors sustaining hydrotreating reactions, Ind. Eng. Chem. Res. 43(2004) 6654-6669. [18] R. Lopez, C.G. Dassori, Mathematical Modeling of a VGO Hydrotreating Reactor, Proceedings of SPE Latin American and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 2001. [19] A. Heidari, S.H. Hashemabadi, CFD simulation of isothermal diesel oil hydrodesulfurization and hydrodearomatization in trickle bed reactor, J. Taiwan Inst. Chem. Eng. 45(2014) 1389-1402. [20] S. Uribe, M.E. Cordero, E.P. Reyes, A. Regalado-méndez, L.G. Zárate, Multiscale CFD modelling and analysis of TBR behavior for an HDS process:Deviations from ideal behaviors, Fuel 239(2019) 1162-1172. [21] H. Korsten, U. Hoffmann, Three-phase reactor model for hydrotreating in pilot trickle-bed reactors, AICHE J. 42(1996) 1350-1360. [22] Z.M. Cheng, X.C. Fang, R.H. Zeng, B.P. Han, L. Huang, W.K. Yuan, Deep removal of sulfur and aromatics from diesel through two-stage concurrently and countercurrently operated fixed-bed reactors, Chem. Eng. Sci. 59(2004) 5465-5472. [23] M.A. Rodríguez, J. Ancheyta, Modeling of hydrodesulfurization (HDS), hydrodenitrogenation (HDN), and the hydrogenation of aromatics (HDA) in a vacuum gas oil hydrotreater, Energy Fuel 18(2004) 789-794. [24] F. Jiménez, V. Kafarov, M. Nuñez, Modeling of industrial reactor for hydrotreating of vacuum gas oils. Simultaneous hydrodesulfurization, hydrodenitrogenation and hydrodearomatization reactions, Chem. Eng. J. 134(2007) 200-208. [25] J. Ancheyta, Modeling and Simulation of Catalytic Reactors for Petroleum Refining, John Wiley & Sons, New York, 2011. [26] A.T. Jarullah, I.M. Mujtaba, A.S. Wood, Kinetic parameter estimation and simulation of trickle-bed reactor for hydrodesulfurization of crude oil, Chem. Eng. Sci. 66(2011) 859-871. [27] F.S. Mederos, I. Elizalde, J. Ancheyta, Steady-state and dynamic reactor models for hydrotreatment of oil fractions:A review, Catal. Rev. 51(2009) 485-607. [28] F.S. Mederos, M.A. Rodríguez, J. Ancheyta, E. Arce, Dynamic modeling and simulation of catalytic hydrotreating reactors, Energy Fuel 20(2006) 936-945. [29] L. da Rocha Novaes, N.S. de Resende, V.M.M. Salim, A.R. Secchi, Modeling, simulation and kinetic parameter estimation for diesel hydrotreating, Fuel 209(2017) 184-193. [30] A. Bakhshi Ani, H. Ale Ebrahim, M.J. Azarhoosh, Simulation and multi-objective optimization of a trickle-bed reactor for diesel hydrotreating by a heterogeneous model using non-dominated sorting genetic algorithm Ⅱ, Energy Fuel 29(2015) 3041-3051. [31] Y.N. Wang, Y.Y. Xu, Y.W. Li, Y.L. Zhao, B.J. Zhang, Heterogeneous modeling for fixedbed Fischer-Tropsch synthesis:Reactor model and its applications, Chem. Eng. Sci. 58(2003) 867-875. [32] G.F. Froment, K.B. Bischoff, J. De Wilde, Chemical Reactor Analysis and Design, Wiley, New York, 1990. [33] G.W. Roberts, Chemical Reactions and Chemical Reactors, Wiley, New York, 2008. [34] M.E. Cordero, S. Uribe, L.G. Zárate, R.N. Rangel, A. Regalado-Méndez, E.P. Reyes, CFD Modelling of Coupled Multiphysics-Multiscale Engineering Cases, Computational Fluid Dynamics-Basic Instruments and Applications in Science, IntechOpen, 2017. [35] G.E. Mueller, Prediction of radial porosity distributions in randomly packed fixed beds of uniformly sized spheres in cylindrical containers, Chem. Eng. Sci. 46(1991) 706-708. [36] M.R. Riazi, A. Faghri, Thermal conductivity of liquid and vapor hydrocarbon systems:pentanes and heavier at low pressures, Ind. Eng. Chem. Pro. Des. Dev. 24(1985) 398-401. [37] N.J. Mariani, G.D. Mazza, O.M. Martínez, L. Ana, G.F. Barreto, On the influence of liquid distribution on heat transfer parameters in trickle bed systems, Can. J. Chem. Eng. 81(2003) 814-820. [38] A. Alvarez, J. Ancheyta, Modeling residue hydroprocessing in a multi-fixed-bed reactor system, Appl. Catal. A 351(2008) 148-158. [39] M. Bhaskar, G. Valavarasu, A. Meenakshisundaram, K.S. Balaraman, Application of a three phase heterogeneous model to analyse the performance of a pilot plant trickle bed reactor, Petrol. Sci. Technol. 20(2002) 251-268. [40] J. Ancheyta, C. Esteban, A batch reactor study to determine effectiveness factors of commercial HDS catalyst, Catal. Today 104(2005) 70-75. [41] K.M. Brunner, H.D. Perez, R.P. Peguin, J.C. Duncan, L.D. Harrison, C.H. Bartholomew, W.C. Hecker, Effects of particle size and shape on the performance of a trickle fixed-bed recycle reactor for Fischer-Tropsch Synthesis, Ind. Eng. Chem. Res. 54(2015) 2902-2909. [42] M.P. Dudukovic, Catalyst effectiveness factor and contacting efficiency in trickle-bed reactors, AIChE J. 23(1977) 940-944. |