[1] C. Gao, P. Feng, S. Peng, C. Shuai, Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair, Acta Biomater. 61(2017) 1-20. [2] A.M. Abdelkader, N. Karim, C. Vallés, S. Afroj, K.S. Novoselov, S.G. Yeates, Ultrafle [3] L. Wang, Y. Zhang, A. Wu, G. Wei, Designed graphene-peptide nanocomposites for biosensor applications:a review, Anal. Chim. Acta 985(2017) 24-40. [4] A. Li, C. Zhang, Y.F. Zhang, Thermal conductivity of graphene-polymer composites:mechanisms, properties, and applications, Polymers 9(2017) 437. [5] H.G. Shiraz, O. Tavakoli, Investigation of graphene-based systems for hydrogen storage, Renew. Sust. Energ. Rev. 74(2017) 104-109. [6] D. Konios, C. Petridis, G. Kakavelakis, M. Sygletou, K. Savva, E. Stratakis, E. Kymakis, Reduced graphene oxide micromesh electrodes for large area, flexible, organic photovoltaic devices, Adv. Funct. Mater. 25(2015) 2213-2221. [7] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306(2004) 666-669. [8] X. Yue, H. Wang, S. Wang, F. Zhang, R. Zhang, In-plane defects produced by ballmilling of expanded graphite, J. Alloy. Compd. 505(2010) 286-290. [9] W. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80(1958) 1339. [10] H. Wang, J.T. Robinson, X. Li, H. Dai, Solvothermal reduction of chemically exfoliated graphene sheets, J. Am. Chem. Soc. 131(2009) 9910-9911. [11] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, H. Dai, Highly conducting graphene sheets and Langmuir-Blodgett films, Nat. Nanotechnol. 3(2008) 538-542. [12] W. Qian, R. Hao, Y. Hou, Y. Tian, C. Shen, H. Gao, X. Liang, Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality, Nano Res. 2(2009) 706-712. [13] A.P. Kauling, A.T. Seefeldt, D.P. Pisoni, R.C. Pradeep, R. Bentini, R.V.B. Oliveira, K.S. Novoselov, A.H. Castro Neto, The worldwide graphene flake production, Adv. Mater. 30(2018) 1803784. [14] T. Yao, Y. Zhang, Y. Xiao, P. Zhao, L. Guo, H. Yang, F. Li, The effect of environmental factors on the adsorption of lubricating oil onto expanded graphite, J. Mol. Liq. 218(2016) 611-614. [15] Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Expanded graphite as superior anode for sodium-ion batteries, Nat. Commun. 5(2014) 4033. [16] P. Steurer, R. Wissert, R. Thomann, R. Mülhaupt, Macromol, functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide, Rapid. Commun. 30(2009) 316-327. [17] Z. Zhang, X. Fang, Study on paraffin/expanded graphite composite phase change thermal energy storage material, Energ. Convers. Manage. 47(2006) 303-310. [18] J. Li, C. Zhai, H. Yin, A. Wang, L. Shen, Impact of polydimethylsiloxanes on physicochemical and tribological properties of naphthenic mineral oil (KN 4010)-based titanium complex grease, Chin. J. Chem. Eng. 27(4) (2019) 944-948. [19] J. Li, H. Yin, C. Zhai, A. Wang, L. Shen, Synthesis of polyphenylmethylsiloxanes and their enhancement on tribological properties of titanium complex grease, J. Appl. Polym. Sci. 136(2019) 47168. [20] M. Farsadi, S. Bagheri, N.A. Ismail, Nanocomposite of functionalized and molybdenum disulfide as friction modifier additive for lubricant, J. Mol. Liq. 244(2017) 304-308. [21] C. Yang, X. Hou, Z. Li, X. Li, L. Yu, Z. Zhang, Preparation of surface-modified lanthanum fluoride-graphene oxide nanohybrids and evaluation of their tribological properties as lubricant additive in liquid paraffin, Appl. Surf. Sci. 388(2016) 497-502. [22] S. Liang, Z. Shen, M. Yi, L. Liu, X. Zhang, In-situ exfoliated graohene for highperformance water-based lubricants, Carbon 96(2016) 1181-1190. [23] H. Kinoshita, Y. Nishina, A.A. Alias, M. Fuji, Tribological properties of monolayer graphene oxide sheets as water-based lubricant additives, Carbon 66(2014) 720-723. [24] J. Zhang, J. Li, A. Wang, B. Edwards, H. Yin, Z. Li, Y. Ding, Improvement of the tribological properties of a lithium-based grease by addition of graphene, J. Nanosci. Nanotechno. 18(2018) 7163-7169. [25] P. Wu, X. Li, C. Zhang, X. Chen, S. Lin, H. Sun, C.-T. Lin, H. Zhu, J. Luo, Self-assembled graphene film as low friction solid lubricant in macroscale contact, ACS Appl. Mater. Inter. 9(2017) 21554-21562. [26] B. Shen, S. Chen, Y. Chen, F. Sun, Enhancement on the tribological of diamond films by utilizing graphene coating as a solid lubricant, Surf. Coat. Tech. 311(2017) 35-45. [27] A.C. Ferrari, Raman spectroscopy of graphene and graphite:disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun. 143(2007) 47-57. [28] M.R. Ammar, J.N. Rouzaud, C.E. Vaudey, N. Toulhoat, N. Moncoffre, Characterization of graphite implanted with chlorine ions using combined Raman microspectrometry and transmission electron microscopy on thin sections prepared by focused ion beam, Carbon 48(2010) 1244-1251. [29] H. Ghanbari, M.A. Shafikhani, M. Daryalaal, Graphene nanosheets production using liquid-phase exfoliation of pre-milled graphite in dimethylformamide and structural defects evaluation, Ceram. Int. 45(2019) 20051-20057. [30] L.G. Cançado, A. Jorio, E.H. Martins Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies, Nano Lett. 11(2011) 3190-3196. |