[1] S.J. Zeng, X. Zhang, L.P. Bai, X.C. Zhang, H. Wang, J.J. Wang, D. Bao, M.D. Li, X.Y. Liu, S.J. Zhang, Ionic-liquid-based CO2 capture systems:structure, interaction and process, Chem. Rev. 117(2017) 9625-9673. [2] G.K. Cui, J.J. Wang, S.J. Zhang, Active chemisorption sites in functionalized ionic liquids for carbon capture, Chem. Soc. Rev. 45(2016) 4307-4339. [3] S.B. Wang, X.C. Wang, Imidazolium ionic liquids, imidazolylidene heterocyclic carbenes, and zeolitic imidazolate frameworks for CO2 capture and photochemical reduction, Angew Chem Int Edit. 55(2016) 2308-2320. [4] S.J. Zhang, J. Sun, X.C. Zhang, J.Y. Xin, Q.Q. Miao, J.J. Wang, Ionic liquid-based green processes for energy production, Chem. Soc. Rev. 43(2014) 7838-7869. [5] L.S. Guo, J. Sun, Q.J. Ge, N. Tsubaki, Recent advances in direct catalytic hydrogenation of carbon dioxide to valuable C2+ hydrocarbons, J. Mater. Chem. A 6(2018) 23244-23262. [6] J. Sun, J.Q. Wang, W.G. Cheng, J.X. Zhang, X.H. Li, S.J. Zhang, Y.B. She, Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2, Green Chem. 14(2012) 654-660. [7] C.J. Clarke, W.C. Tu, O. Levers, A. Brohl, J.P. Hallett, Green and sustainable solvents in chemical processes, Chem. Rev. 118(2018) 747-800. [8] S.P.M. Ventura, F.A.E. Silva, M.V. Quental, D. Mondal, M.G. Freire, J.A.P. Coutinho, Ionic-liquid-mediated extraction and separation processes for bioactive compounds:past, present, and future trends, Chem. Rev. 117(2017) 6984-7052. [9] L.C. Tome, I.M. Marrucho, Ionic liquid-based materials:a platform to design engineered CO2 separation membranes, Chem. Soc. Rev. 45(2016) 2785-2824. [10] S.F. Wang, X.Q. Li, H. Wu, Z.Z. Tian, Q.P. Xin, G.W. He, D.D. Peng, S.L. Chen, Y. Yin, Z.Y. Jiang, M.D. Guiver, Advances in high permeability polymer-based membrane materials for CO2 separations, Energy Environ. Sci. 9(2016) 1863-1890. [11] W.J. Qian, J. Texter, F. Yan, Frontiers in poly(ionic liquid)s:syntheses and applications, Chem. Soc. Rev. 46(2017) 1124-1159. [12] C.N. Dai, J. Zhang, C.P. Huang, Z.G. Lei, Ionic liquids in selective oxidation:catalysts and solvents, Chem. Rev. 117(2017) 6929-6983. [13] J.M. Zheng, J.A. Lochala, A. Kwok, Z.Q.D. Deng, J. Xiao, Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications, Adv Sci 4(2017) 1700032. [14] H.Y. Che, S.L. Chen, Y.Y. Xie, H. Wang, K. Amine, X.Z. Liao, Z.F. Ma, Electrolyte design strategies and research progress for room-temperature sodium-ion batteries, Energy Environ. Sci. 10(2017) 1075-1101. [15] L. Shuai, M.T. Amiri, Y.M. Questell-Santiago, F. Heroguel, Y.D. Li, H. Kim, R. Meilan, C. Chapple, J. Ralph, J.S. Luterbacher, Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization, Science 354(2016) 329-333. [16] Z.R. Zhang, J.L. Song, B.X. Han, Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids, Chem. Rev. 117(2017) 6834-6880. [17] K.H. Kim, T. Dutta, J. Sun, B. Simmons, S. Singh, Biomass pretreatment using deep eutectic solvents from lignin derived phenols, Green Chem. 20(2018) 809-815. [18] F. Xu, J. Sun, M. Wehrs, K.H. Kim, S.S. Rau, A.M. Chan, B.A. Simmons, A. Mukhopadhyay, S. Singh, Biocompatible choline-based deep eutectic solvents enable one-pot production of cellulosic ethanol, ACS Sustain. Chem. Eng. 6(2018) 8914-8919. [19] F. Xu, J. Sun, N.V.S.N.M. Konda, J. Shi, T. Dutta, C.D. Scown, B.A. Simmons, S. Singh, Transforming biomass conversion with ionic liquids:Process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol, Energ. Environ. Sci. 9(2016) 1042-1049. [20] J.K. Xu, Y.C. Sun, R.C. Sun, Ionic liquid pretreatment of woody biomass to facilitate biorefinery:structural elucidation of alkali-soluble hemicelluloses, ACS Sustain. Chem. Eng. 2(2014) 1035-1042. [21] J. Shi, J.M. Gladden, N. Sathitsuksanoh, P. Kambam, L. Sandoval, D. Mitra, S. Zhang, A. George, S.W. Singer, B.A. Simmons, S. Singh, One-pot ionic liquid pretreatment and saccharification of switchgrass, Gree Chem. 15(2013) 2579-2589. [22] E. Husson, T. Auxenfans, M. Herbaut, M. Baralle, V. Lambertyn, H. Rakotoarivonina, C. Remond, C. Sarazin, Sequential and simultaneous strategies for biorefining of wheat straw using room temperature ionic liquids, xylanases and cellulases, Bioresour. Technol. 251(2018) 280-287. [23] T. Dutta, N.G. Isern, J. Sun, E. Wang, S. Hull, J.R. Cort, B.A. Simmons, S. Singh, Survey of lignin-structure changes and depolymerization during ionic liquid pretreatment, ACS Sustain. Chem. Eng. 5(2017) 10116-10127. [24] Y.Y. Yang, H.L. Fan, J.L. Song, Q.L. Meng, H.C. Zhou, L.Q. Wu, G.Y. Yang, B.X. Han, Free radical reaction promoted by ionic liquid:a route for metal-free oxidation depolymerization of lignin model compound and lignin, Chem. Commun. 51(2015) 4028-4031. [25] M.A.R. Martins, U. Domanska, B. Schroder, J.A.P. Coutinho, S.P. Pinho, Selection of ionic liquids to be used as separation agents for terpenes and terpenoids, ACS Sustain. Chem. Eng. 4(2016) 548-556. [26] P. Moyer, M.D. Smith, N. Abdoulmoumine, S.C. Chmely, J.C. Smith, L. Petridis, N. Labbe, Relationship between lignocellulosic biomass dissolution and physicochemical properties of ionic liquids composed of 3-methylimidazolium cations and carboxylate anions, Phys. Chem. Chem. Phys. 20(2018) 2508-2516. [27] J. Sun, J. Shi, N.V.S.N.M. Konda, C. Dan, Efficient dehydration and recovery of ionic liquid after lignocellulosic processing using pervaporation, Biotechnol. Biofuels 10(2017) 154. [28] Z.Y. Meng, J. Sun, J.Q. Wang, J.X. Zhang, Z.Z. Fu, W.G. Cheng, X.P. Zhang, An efficient and stable ionic liquid system for synthesis of ethylene glycol via hydrolysis of ethylene carbonate, Chinese J Chem Eng. 18(2010) 962-966. [29] A.M.d.C. Lopes, R.M. Łukasik, Separation and recovery of a hemicellulose-derived sugar produced from the hydrolysis of biomass by an acidic ionic liquid, ChemSusChem 11(2018) 1099-1107. [30] P.A. Hunt, C.R. Ashworth, R.P. Matthews, Hydrogen bonding in ionic liquids, Chem. Soc. Rev. 44(2015) 1257-1288. [31] S.M. Chen, S.J. Zhang, X.M. Liu, J.Q. Wang, J.J. Wang, K. Dong, J. Sun, B.H. Xu, Ionic liquid clusters:structure, formation mechanism, and effect on the behavior of ionic liquids, Phys. Chem. Chem. Phys. 16(2014) 5893-5906. [32] Y. Chen, Y.Y. Cao, Y.W. Zhang, T.C. Mu, Hydrogen bonding between acetate-based ionic liquids and water:three types of IR absorption peaks and NMR chemical shifts change upon dilution, J. Mol. Struct. 1058(2014) 244-251. [33] J.M.M. Araujo, A.B. Pereiro, J.N.C. Lopes, L.P.N. Rebelo, I.M. Marrucho, Hydrogenbonding and the dissolution mechanism of uracil in an acetate ionic liquid:new insights from NMR spectroscopy and quantum chemical calculations, J. Phys. Chem. B 117(2013) 4109-4120. [34] Y.-L. Wang, A. Laaksonen, M.D. Fayer, Hydrogen bonding versus π-π stacking interactions in imidazolium-oxalatoborate ionic liquid, J. Phys. Chem. B 121(2017) 7173-7179. [35] Y.Y. Cao, T.C. Mu, Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis, Ind. Eng. Chem. Res. 53(2014) 8651-8664. [36] M.T. Clough, K. Geyer, P.A. Hunt, J. Mertes, T. Welton, Thermal decomposition of carboxylate ionic liquids:trends and mechanisms, Phys. Chem. Chem. Phys. 15(2013) 20480-20495. [37] H. Tokuda, K. Hayamizu, K. Ishii, M. Susan, M. Watanabe, Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation, J. Phys. Chem. B 109(2005) 6103-6110. [38] Y. Cao, Y. Chen, X. Sun, Z. Zhang, T. Mu, Water sorption in ionic liquids:kinetics, mechanisms and hydrophilicity, Phys. Chem. Chem. Phys. 14(2012) 12252-12262. [39] Y. Cao, Y. Chen, L. Lu, Z. Xue, T. Mu, Water sorption in functionalized ionic liquids:kinetics and intermolecular interactions, Ind. Eng. Chem. Res. 52(2013) 2073-2083. [40] M.C. Kroon, W. Buijs, C.J. Peters, G.J. Witkamp, Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids, Thermochim. Acta 465(2007) 40-47. [41] C. Maton, N. De Vos, C.V. Stevens, Ionic liquid thermal stabilities:decomposition mechanisms and analysis tools, Chem. Soc. Rev. 42(2013) 5963-5977. [42] P. Navarro, M. Larriba, J. Garcia, F. Rodriguez, Thermal stability, specific heats, and surface tensions of (emim DCA +4empy Tf2N) ionic liquid mixtures, J. Chem. Thermodyn. 76(2014) 152-160. [43] R. Hayes, G.G. Warr, R. Atkin, Structure and nanostructure in ionic liquids, Chem. Rev. 115(2015) 6357-6426. [44] R.P. Matthews, I.J. Villar-Garcia, C.C. Weber, J. Griffith, F. Cameron, J.P. Hallett, P.A. Hunt, T. Welton, A structural investigation of ionic liquid mixtures, Phys. Chem. Chem. Phys. 18(2016) 8608-8624. [45] R.P. Matthews, T. Welton, P.A. Hunt, Competitive pi interactions and hydrogen bonding within imidazolium ionic liquids, Phys. Chem. Chem. Phys. 16(2014) 3238-3253. [46] Y. Fukaya, K. Hayashi, M. Wada, H. Ohno, Cellulose dissolution with polar ionic liquids under mild conditions:required factors for anions, Green Chem. 10(2008) 44-46. [47] Y. Fukaya, A. Sugimoto, H. Ohno, Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates, Biomacromolecules 7(2006) 3295-3297. [48] T. Cremer, C. Kolbeck, K.R.J. Lovelock, N. Paape, R. Wolfel, P.S. Schulz, P. Wasserscheid, H. Weber, J. Thar, B. Kirchner, F. Maier, H.P. Steinruck, Towards a molecular understanding of cation-anion interactions-probing the electronic structure of imidazolium ionic liquids by NMR spectroscopy, X-ray photoelectron spectroscopy and theoretical calculations, Chem-Eur. J. 16(2010) 9018-9033. [49] E. Liu, M. Li, L. Das, Y. Pu, J. Shi, Understanding lignin fractionation and characterization from engineered switchgrass treated by an aqueous ionic liquid, ACS Sustain. Chem. Eng. 6(2018) 6612-6623. [50] K.H. Kim, T. Dutta, J. Sun, B. Simmons, S. Singh, Biomass pretreatment using deep eutectic solvent from lignin derived phenols, Green Chem. 20(2018) 809-815. |