[1] Q.Y. Tang, Z.J. Cheng, N. Yang, Q.Z. Li, P. Wang, D.P. Chen, W.J. Wang, X.J. Song, X.C. Dong, Hydrangea-structured tumor microenvironment responsive degradable nanoplatform for hypoxic tumor multimodal imaging and therapy, Biomaterials 205(2019) 1-10. [2] X.J. Zhou, F. Chen, H.P. Lu, L.L. Kong, S.Y. Zhang, W. Zhang, J.J. Nie, B.Y. Du, X.P. Wang, Ionic microgel loaded with gold nanoparticles for the synergistic dual-drug delivery of doxorubicin and diclofenac sodium, Ind. Eng. Chem. Res. 58(25) (2019) 10922-10930. [3] S.W. Niu, G.R. Williams, J.R. Wu, J.Z. Wu, X.J. Zhang, H. Zheng, S.D. Li, L.M. Zhu, A novel chitosan-based nanomedicine for multi-drug resistant breast cancer therapy, Chem. Eng. J. 369(2019) 134-149. [4] L.Y. Shen, S. Pan, D.C. Niu, J.P. He, X.B. Jia, J.N. Hao, J.L. Gu, W.R. Zhao, P. Li, Y.S. Li, Facile synthesis of organosilica-capped mesoporous silica nanocarriers with selective redox-triggered drug release properties for safe tumor chemotherapy, Biomaterials science 7(5) (2019) 1825-1832. [5] Q. Zeng, R.J. Zhang, T. Zhang, D. Xing, H2O2-responsive biodegradable nanomedicine for cancer-selective dual-modal imaging guided precise photodynamic therapy, Biomaterials 207(2019) 39-48. [6] M. Chung, H. Liu, K. Lin, W.T. Chia, H. Sung, A pH responsive carrier system that generates NO bubbles to trigger drug release and reverse p-glycoprotein-mediated multidrug resistance, Angew. Chem. Int. Ed. 54(34) (2015) 9890-9893. [7] M.A. Swartz, N. Iida, E.W. Roberts, S. Sangaletti, M.H. Wong, F.E. Yull, L.M. Coussens, Y.A. DeClerck, Tumor microenvironment complexity:Emerging roles in cancer therapy, Cancer Res. 72(2012) 2473-2480. [8] R. Mortera, J. Vivero-Escoto II., E. Slowing, B. Garrone, V.S. Lin Onida, Cell-induced intracellular controlled release of membrane impermeable cysteine from a mesoporous silica nanoparticle-based drug delivery system, Chem. Commun. 22(2009) 3219-3221. [9] R. Hong, G. Han, J.M. Fernández, B.J. Kim, N.S. Forbes, V.M. Rotello, Glutathionemediated delivery and release using monolayer protected nanoparticle carriers, J. Am. Chem. Soc. 128(4) (2006) 1078-1079. [10] J. Wang, X. Sun, W. Mao, W. Sun, J. Tang, M. Sui, Y. Shen, Z. Gu, Tumor redox heterogeneity-responsive prodrug nanocapsules for cancer chemotherapy, Adv. Mater. 25(27) (2013) 3670-3676. [11] T.B. Ren, W.J. Xia, H.Q. Dong, Y.Y. Li, Sheddable micelles based on disulfide-linked hybrid PEG-polypeptide copolymer for intracellular drug delivery, Polymer 52(16) (2011) 3580-3586. [12] S. Takae, K. Miyata, M. Oba, T. Ishii, N. Nishiyama, K. Itaka, Y. Yamasaki, H. Koyama, K. Kataoka, PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors, J. Am. Chem. Soc. 130(18) (2008) 6001-6009. [13] R. Cheng, F. Feng, F. Meng, C. Deng, J. Feijen, Z. Zhong, Glutathione-responsive nanovehicles as a promising platform for targeted intracellular drug and gene delivery, J. Control. Release 152(1) (2011) 2-12. [14] M. Song, T. Liu, C. Shi, X. Zhang, X. Chen, Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia, ACS Nano 10(1) (2015) 633-647. [15] Y. Li, J. Jin, D. Wang, J. Lv, K. Hou, Y. Liu, C. Chen, Z. Tang, Coordination-responsive drug release inside gold nanorod@metal-organic framework core-shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy, Nano Res. 11(6) (2017) 3294-3305. [16] L.T. Meng, Y.L. Cheng, X.N. Tong, S.J. Gan, Y.W. Ding, Y. Zhang, C. Wang, L. Xu, Y.S. Zhu, J.H. Wu, Y.Q. Hu, A. Yuan, Tumor oxygenation and hypoxia inducible factor-1 functional inhibition via a reactive oxygen species responsive nanoplatform for enhancing radiation therapy and abscopal effects, ACS Nano 12(8) (2018) 8308-8322. [17] W. Zhu, Z. Dong, T. Fu, J. Liu, Q. Chen, Y. Li, R. Zhu, L. Xu, Z. Liu, Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy, Adv. Funct. Mater. 26(30) (2016) 5490-5498. [18] P. Prasad, C.R. Gordijo, A.Z. Abbasi, A. Maeda, A. Ip, A.M. Rauth, R.S. DaCosta, X.Y. Wu, Multifunctional albumin-MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response, ACS Nano 8(4) (2014) 3202-3212. [19] Q. Chen, L.Z. Feng, J.J. Liu, W.W. Zhu, Z.L. Dong, Y.F. Wu, Z. Liu, Intelligent albuminMnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy, Adv. Mater. 28(33) (2016) 7129-7136. [20] J. Chen, H.M. Meng, Y. Tian, R. Yang, D. Du, Z.H. Li, L.B. Qu, Y.H. Lin, Recent advances in functionalized MnO2 nanosheets for biosensing and biomedicine applications, Nanoscale Horiz. 4(2) (2019) 321-338. [21] L.S. Lin, J.B. Song, L. Song, K.M. Ke, Y.J. Liu, Z.J. Zhou, Z.Y. Shen, J. Li, Z. Yang, W. Tang, G. Niu, H.H. Yang, X.Y. Chen, Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy, Angew. Chem. Int. Ed. 57(18) (2018) 4902-4906. [22] Z.Liu,S.J.Zhang,H.Lin,M.L.Zhao,H.L.Yao,L.L.Zhang,W.J.Peng,Y.Chen,Theranostic 2D ultrathin MnO2 nanosheets with fast responsibility to endogenous tumor microenvironment and exogenous NIR irradiation, Biomaterials 155(2018) 54-63. [23] D.G. He, L. Hai, X. He, X. Yang, H.W. Li, Glutathione-activatable and O2/Mn2+-evolving nanocomposite for highly efficient and selective photodynamic and gene-silencing dual therapy, Adv. Funct. Mater. 27(46) (2017) 1704089. [24] M.L. Song, T. Liu, C.R. Shi, X.Z. Zhang, X.Y. Chen, Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia, ACS Nano 10(1) (2016) 633-647. [25] C.C. Chu, H.R. Lin, H. Liu, X.Y. Wang, J.Q. Wang, P.F. Zhang, H.Y. Gao, C. Huang, Y. Zeng, Y.Z. Tan, G. Liu, X.Y. Chen, Tumor microenvironment-triggered supramolecular system as an in situ nanotheranostic generator for cancer phototherapy, Adv. Mater. 29(23) (2017) 1605928. [26] R.G. Wang, M.Y. Zhao, D. Deng, X. Ye, F. Zhang, H. Chen, J.L. Kong, An intelligent and biocompatible photosensitizer conjugated silicon quantum dots-MnO2 nanosystem for fluorescence imaging-guided efficient photodynamic therapy, J. Mater. Chem. B 6(28) (2018) 4592-4601. [27] L.H. Jin, J.H. Liu, Y. Tang, L.Q. Cao, T.Q. Zhang, Q.H. Yuan, Y.H. Wang, H.J. Zhang, MnO2-functionalized Co-P nanocomposite:A new theranostic agent for pHtriggered T1/T2 dual-modality magnetic resonance imaging-guided chemophotothermal synergistic therapy, ACS Appl. Mater. Interfaces 9(48) (2017) 41648-41658. [28] W.P. Fan, W.B. Bu, B. Shen, Q.J. He, Z.W. Cui, Y.Y. Liu, X.P. Zheng, K.L. Zhao, J.L. Shi, Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen-elevated synergetic therapy, Adv. Mater. 27(28) (2015) 4155-4161. [29] R.H. Yang, M.M. Hou, Y. Gao, L. Zhang, Z.G. Xu, Y.J. Kang, P. Xue, Indocyanine greenmodified hollow mesoporous prussian blue nanoparticles loading doxorubicin for fluorescence-guided tri-modal combination therapy of cancer, Nanoscale 11(12) (2019) 5717-5731. [30] Q. Li, L.H. Sun, M.M. Hou, Q.B. Chen, R.H. Yang, L. Zhang, Z.G. Xu, Y.J. Kang, P. Xue, Phase-change material packaged within hollow copper sulfide nanoparticles carrying doxorubicin and chlorin e6 for fluorescence-guided trimodal therapy of cancer, ACS Appl. Mater. Interfaces 11(1) (2019) 417-429. [31] Y.T. Li, J. Jin, D.W. Wang, J.W. Lv, K. Hou, Y.L. Liu, C.Y. Chen, Z.Y. Tang, Coordinationresponsive drug release inside gold nanorod@metal-organic framework core-shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy, Nano Res. 11(6) (2018) 3294-3305. [32] X.Y. Chen, Q. Zhang, J.L. Li, M. Yang, N.N. Zhao, F.J. Xu, Rattle-structured rough nanocapsules with in-situ-formed reil gold nanorod cores for complementary gene/chemo/photothermal therapy, ACS Nano 12(6) (2018) 5646-5656. [33] C. Xu, F. Chen, H.F. Valdovinos, D.W. Jiang, S. Goel, B. Yu, H.Y. Sun, T.E. Barnhart, J.J. Moon, W.B. Cai, Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy, Biomaterials 165(2018) 56-65. [34] W. Li, H.B. Zhang, X.M. Guo, Z.H. Wang, F.F. Kong, L.H. Luo, Q.P. Li, C.Q. Zhu, J. Yang, Y. Lou, Y.Z. Du, J. You, Gold nanospheres-stabilized indocyanine green as a synchronous photodynamic-photothermal therapy platform that inhibits tumor growth and metastasis, ACS Appl. Mater. Interfaces 9(4) (2017) 3354-3367. [35] X.R. Deng, Y.Y. Chen, Z.Y. Cheng, K.R. Deng, P.A. Ma, Z.Y. Hou, B. Liu, S.S. Huang, D.Y. Jin, J. Lin, Rational design of a comprehensive cancer therapy platform using temperature-sensitive polymer grafted hollow gold nanospheres:simultaneous chemo/photothermal/photodynamic therapy triggered by a 650 nm laser with enhanced anti-tumor efficacy, Nanoscale 8(12) (2016) 6837-6850. [36] J. You, G.D. Zhang, C. Li, Exceptionally high payload of doxorubicin in hollow gold nanospheres for near-infrared light-triggered drug release, ACS Nano 4(2) (2010) 1033-1041. [37] N.X. Zhao, J. You, Z.H. Zeng, C. Li, Y.L. Zu, An ultra pH-sensitive and aptamerequipped nanoscale drug-delivery system for selective killing of tumor cells, Small 9(20) (2013) 3477-3484. [38] W. Li, X.M. Guo, F.F. Kong, H.B. Zhang, L.H. Luo, Q.P. Li, C.Q. Zhu, J. Yang, Y.Z. Du, J. You, Overcoming photodynamic resistance and tumor targeting dual-therapy mediated by indocyanine green conjugated gold nanospheres, J. Control. Release 258(2017) 171-181. [39] P.Y. Zhang, J.Q. Wang, H.Y. Huang, B.L. Yu, K.Q. Qiu, J.J. Huang, S.T. Wang, L. Jiang, G. Gasser, L.N. Ji, H. Chao, Unexpected high photothemal conversion efficiency of gold nanospheres upon grafting with two-photon luminescent ruthenium(II) complexes:A way towards cancer therapy? Biomaterials 63(2015) 102-114. [40] R. Guo, R.T. Li, X.L. Li, L.Y. Zhang, X.Q. Jiang, B.R. Liu, Dual-functional alginic acid hybrid nanospheres for cell imaging and drug delivery, Small 5(6) (2009) 709-7171. [41] H. Deng, F. Dai, G. Ma, X. Zhang, Theranostic gold nanomicelles made from biocompatible comb-like polymers for thermochemotherapy and multifunctional imaging with rapid clearance, Adv. Mater. 27(24) (2015) 3645-3653. [42] R. Guo, R.T. Li, X.L. Li, L.Y. Zhang, X.Q. Jiang, B.R. Liu, Dual-functional alginic acid hybrid nanospheres for cell imaging and drug delivery, Small 5(6) (2009) 709-717. [43] Z.M. Wang, L.N. Chen, Z.Y. Chu, C.S. Huang, Y.K. Huang, N.Q. Jia, Gemcitabine-loaded gold nanospheres mediated by albumin for enhanced anti-tumor activity combining with CT imaging, Mater. Sci. Eng. C. 89(2018) 106-118. [44] Q.J. Li, M. Chen, D.Y. Chen, L.M. Wu, One-pot synthesis of diphenylalanine-based hybrid nanospheres for controllable pH-and GSH-responsive delivery of drugs, Chem. Mater. 28(18) (2016) 6584-6590. [45] X. Huang, X. Teng, D. Chen, F. Tang, J. He, The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function, Biomaterials 31(3) (2010) 438-448. [46] H. Wang, R. Zhao, Y. Li, H. Liu, F. Li, Y. Zhao, G. Nie, Aspect ratios of gold nanoshell capsules mediated melanoma ablation by synergistic photothermal therapy and chemotherapy, Nanomedicine 12(2) (2016) 439-448. [47] R. Zhao, X. Han, Y. Li, H. Wang, T. Ji, Y. Zhao, G. Nie, Photothermal effect enhanced cascade-targeting strategy for improved pancreatic cancer therapy by gold nanoshell@mesoporous silica nanorod, ACS Nano 11(8) (2017) 1418-1423. [48] J. Wei, J. Shi, Q. Wu, L. Yang, S.K. Cao, Hollow hydroxyapatite/polyelectrolyte hybrid microparticles with controllable size, wall thickness and drug delivery properties, J. Mater. Chem. B 3(41) (2015) 8162-8169. [49] Z. Zhang, Y.H. Ji, Mesoporous manganese dioxide coated gold nanorods as a multiresponsive nanoplatform for drug delivery, Ind. Eng. Chem. Res. 58(8) (2019) 2991-2999. [50] S.A. Alzahrani, S.A. Al-Thabaiti, W.S. Al-Arjan, M.A. Malik, Z. Khan, Preparation of ultra long α-MnO2 and Ag@MnO2 nanoparticles by seedless approach and their photocatalytic performance, J. Mol. Struct. 1137(5) (2017) 495-505. [51] W. Zhang, F. Wang, Y. Wang, J. Wang, Y. Yu, S. Guo, R. Chen, D. Zhou, pH and nearinfrared light dual-stimuli responsive drug delivery using DNA-conjugated gold nanorods for effective treatment of multidrug resistant cancer cells, J. Control. Release 232(28) (2016) 9-19. [52] Y. Li, J. Jin, D. Wang, J. Lv, K. Hou, Y. Liu, C. Chen, Z. Tang, Coordination-responsive drug release inside gold nanorod@metal-organic framework core-shell nanostructures for near-infrared-induced synergistic chemo-photothermal therapy, Nano Res. 11(6) (2017) 3294-3305. [53] Z. Zhang, J. Wang, X. Nie, T. Wen, Y. Ji, X. Wu, Y. Zhao, C. Chen, Near infrared laserinduced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods, J. Am. Chem. Soc. 136(20) (2014) 7317-7326. [54] W. Yao, H. Zhou, Y. Lu, Synthesis and property of novel MnO2@polypyrrole coaxial nanotubes as electrode material for supercapacitors, J. Power Sources 241(2013) 359-366. [55] C.A. Choi, J.E. Lee, Z.A.I. Mazrad, I. In, J.H. Jeong, S.Y. Park, Redox-and pH-responsive fluorescent carbon nanoparticles-MnO2-based FRET system for tumor-targeted drug delivery in vivo and in vitro, J. Ind. Eng. Chem. 63(2018) 208-219. [56] F. Wang, H.X. Dai, J.G. Deng, G.M. Bai, K.M. Ji, Y.X. Liu, Manganese oxides with rod-, wire-, tube-, and flower-like morphologies:highly effective catalysts for the removal of toluene, Environ. Sci. Technol. 46(7) (2012) 4034-4041. [57] J.M. Li, Z.P. Qu, Y. Qin, H. Wang, Effect of MnO2 morphology on the catalytic oxidation of toluene over Ag/MnO2 catalysts, Appl. Surf. Sci. 385(2016) 234-240. [58] L. Guo, Y. Zhang, Z.P. Yang, H. Peng, R.X. Wei, C.F. Wang, M. Feng, Tunneling nanotubular expressways for ultrafast and accurate M1 macrophage delivery of anticancer drugs to metastatic ovarian carcinoma, ACS Nano 13(2) (2019) 1078-1096. [59] P. Ritger, N. Peppas, A simple equation for description of solute release II. Fickian and anomalous release from swellable devices, J. Control. Release 5(1) (1987) 37-42. [60] S.H. Xu, J. Shi, D.S. Feng, L. Yang, S.K. Cao, Hollow hierarchical hydroxyapatite/au/polyelectrolyte hybrid microparticles for multi-responsive drug delivery, J. Mater. Chem. B 2(38) (2014) 6500-6507. [61] X.Y. Zhu, J. Shi, H. Ma, R.X. Chen, J.G. Li, S.K. Cao, Hierarchical hydroxyapatite/polyelectrolyte microcapsules capped with AuNRs for remotely triggered drug delivery, Mater. Sci. Eng. C. 99(2019) 1236-1245. |