Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (8): 2037-2050.DOI: 10.1016/j.cjche.2020.04.003
• Reviews • Previous Articles Next Articles
Ranran Wu1, Haiyan Song1, Yuanming Wang1,2, Lei Wang3, Zhiguang Zhu1,2
Received:
2020-01-14
Revised:
2020-03-13
Online:
2020-09-19
Published:
2020-08-28
Contact:
Zhiguang Zhu
Supported by:
Ranran Wu1, Haiyan Song1, Yuanming Wang1,2, Lei Wang3, Zhiguang Zhu1,2
通讯作者:
Zhiguang Zhu
基金资助:
Ranran Wu, Haiyan Song, Yuanming Wang, Lei Wang, Zhiguang Zhu. Multienzyme co-immobilization-based bioelectrode: Design of principles and bioelectrochemical applications[J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2037-2050.
Ranran Wu, Haiyan Song, Yuanming Wang, Lei Wang, Zhiguang Zhu. Multienzyme co-immobilization-based bioelectrode: Design of principles and bioelectrochemical applications[J]. 中国化学工程学报, 2020, 28(8): 2037-2050.
[1] J. Cui, Y. Feng, T. Lin, Z. Tan, C. Zhong, S. Jia, Mesoporous metal-organic framework with well-defined cruciate flower-like morphology for enzyme immobilization, ACS Appl. Mater. Interfaces 9(12) (2017) 10587-10594. [2] J. Shaeri, I. Wright, E.B. Rathbone, R. Wohlgemuth, J.M. Woodley, Characterization of enzymatic D-xylulose 5-phosphate synthesis, Biotechnol. Bioeng. 101(4) (2008) 761-767. [3] S.S. Sun, X.L. Wei, C. You. Grosser, et al., Design of an in vitro biocatalytic cascade for the manufacture of islatravir, Science 366(6470) (2019) 1255-1259. [12] J. Shi, Y. Wu, S. Zhang, Y. Tian, D. Yang, Z. Jiang, Bioinspired construction of multienzyme catalytic systems, Chem. Soc. Rev. 47(12) (2018) 4295-4313. [13] C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente, Improvement of enzyme activity, stability and selectivity via immobilization techniques, Enzyme Microb. Technol. 40(6) (2007) 1451-1463. [14] S. Ren, C. Li, X. Jiao, S. Jia, Y. Jiang, M. Bilal, J. Cui, Recent progress in multienzymes co-immobilization and multienzyme system applications, Chem. Eng. J. 373(2019) 1254-1278. [15] S. Schoffelen, J.C.M. van Hest, Multi-enzyme systems:bringing enzymes together in vitro, Soft Matter. 8(6) (2012) 1736-1746. [16] Y.H.P. Zhang, Simpler Is Better:High-yield and potential low-cost biofuels production through cell-free synthetic pathway biotransformation (SyPaB), ACS Catal. 1(9) (2011) 998-1009. [17] E.T. Hwang, S. Lee, Multienzymatic cascade reactions via enzyme complex by immobilization, ACS Catal. 9(5) (2019) 4402-4425. [18] C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, S. Yao, Recent advances in electrochemical glucose biosensors:A review, RSC Adv. 3(14) (2013) 4473-4491. [19] L. Zhang, J. Liu, Z. Fu, L. Qi, A wearable biosensor based on bienzyme gel-membrane for sweat lactate monitoring by mounting on eyeglasses, J. Nanosci. Nanotechnol. 20(3) (2020) 1495-1503. [20] B. Zou, Y. Chu, J. Xia, Monocrotophos detection with a bienzyme biosensor based on ionic-liquid-modified carbon nanotubes, Anal. Bioanal. Chem. 411(13) (2019) 2905-2914. [21] S. Alim, A.K.M. Kafi, J. Rajan, M.M. Yusoff, Application of polymerized multiporous nanofiber of SnO2 for designing a bienzyme glucose biosensor based on HRP/GOx, Int. J. Biol. Macromol. 123(2019) 1028-1034. [22] B. Alkotaini, S. Abdellaoui, K. Hasan, M. Grattieri, T. Quah, R. Cai, M.Y. Yuan, S.D. Minteer, Sustainable bioelectrosynthesis of the bioplastic polyhydroxybutyrate:Overcoming substrate requirement for NADH regeneration, ACS Sustain. Chem. Eng. 6(4) (2018) 4909-4915. [23] L. Wang, W. Gong, F. Wang, Z. Yu, Z. Chen, Efficient bienzyme nanocomposite film for chiral recognition of l-tryptophan, l-phenylalanine and l-tyrosine, Anal. Methods 8(17) (2016) 3481-3487. [24] E. Vargas, M.A. Ruiz, F.J. Ferrero, S. Campuzano, V. Ruiz-Valdepenas Montiel, A.J. Reviejo, J.M. Pingarron, Automatic bionalyzer using an integrated amperometric biosensor for the determination of L-malic acid in wines, Talanta 158(2016) 6-13. [25] H. Sakamoto, T. Komatsu, K. Yamasaki, T. Satomura, S.I. Suye, Design of a multi-enzyme reaction on an electrode surface for an L-glutamate biofuel anode, Biotechnol. Lett. 39(2) (2017) 235-240. [26] Y. Hirano, M. Ikegami, K. Kowata, Y. Komatsu, Bienzyme reactions on cross-linked DNA scaffolds for electrochemical analysis, Bioelectrochemistry 113(2017) 15-19. [27] U. Schröder, Self-assembling enzyme networks-A new path towards multistep bioelectrocatalytic systems, Angew. Chem. Int. Ed. 52(13) (2013) 3568-3569. [28] F. Jia, B. Narasimhan, S. Mallapragada, Materials-based strategies for multi-enzyme immobilization and co-localization:A review, Biotechnol. Bioeng. 111(2) (2014) 209-222. [29] T. Satomura, K. Horinaga, S. Tanaka, E. Takamura, H. Sakamoto, H. Sakuraba, T. Ohshima, S.I. Suye, Construction of a novel bioanode for amino acid powered fuel cells through an artificial enzyme cascade pathway, Biotechnol. Lett. 41(4-5) (2019) 605-611. [30] M. Christwardana, Y.J. Chung, Y. Kwon, Co-immobilization of glucose oxidase and catalase for enhancing the performance of a membraneless glucose biofuel cell operated under physiological conditions, Nanoscale 9(5) (2017) 1993-2002. [31] F. Gao, M. Hu, S. Li, Q. Zhai, Y. Jiang, Positional orientating co-immobilization of bienzyme CPO/GOx on mesoporous TiO2 thin film for efficient cascade reaction, Bioprocess Biosyst. Eng. 42(6) (2019) 1065-1075. [32] C. Agnès, B. Reuillard, A. Le Goff, M. Holzinger, S. Cosnier, A double-walled carbon nanotube-based glucose/H2O2 biofuel cell operating under physiological conditions, Electrochem. Commun. 34(2013) 105-108. [33] K. Elouarzaki, M. Bourourou, M. Holzinger, A. Le Goff, R.S. Marks, S. Cosnier, Freestanding HRP-GOx redox buckypaper as an oxygen-reducing biocathode for biofuel cell applications, Energ. Environ. Sci. 8(7) (2015) 2069-2074. [34] W. Jia, C. Jin, W. Xia, M. Muhler, W. Schuhmann, L. Stoica, Glucose oxidase/horseradish peroxidase co-immobilized at a CNT-modified graphite electrode:Towards potentially implantable biocathodes, Chemistry 18(10) (2012) 2783-2786. [35] S. Xu, S.D. Minteer, Enzymatic biofuel cell for oxidation of glucose to CO2, ACS Catal. 2(1) (2012) 91-94. [36] L. Zhu, R. Yang, J. Zhai, C. Tian, Bienzymatic glucose biosensor based on coimmobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode, Biosens. Bioelectron. 23(4) (2007) 528-535. [37] J. Pilas, H. Iken, T. Selmer, M. Keusgen, M.J. Schöning, Development of a multi-parameter sensor chip for the simultaneous detection of organic compounds in biogas processes, Phy. Status Solidi (A) 212(6) (2015) 1306-1312. [38] B. Dalkiran, C. Kaçar, P.E. Erden, E. Kiliç, Amperometric xanthine biosensors based on chitosan-Co3O4-multiwall carbon nanotube modified glassy carbon electrode, Sensor. Actuat. B:Chem. 200(2014) 83-91. [39] F. Wang, W. Gong, L. Wang, Z. Chen, Enhanced amperometric response of a glucose oxidase and horseradish peroxidase based bienzyme glucose biosensor modified with a film of polymerized toluidine blue containing reduced graphene oxide, Microchim. Acta 182(11-12) (2015) 1949-1956. [40] R. Sakuta, K. Takeda, T. Ishida, K. Igarashi, M. Samejima, N. Nakamura, H. Ohno, Multi-enzyme anode composed of FAD-dependent and NAD-dependent enzymes with a single ruthenium polymer mediator for biofuel cells, Electrochem. Commun. 56(2015) 75-78. [41] Y. Chung, D.C. Tannia, Y. Kwon, Glucose biofuel cells using bi-enzyme catalysts including glucose oxidase, horseradish peroxidase and terephthalaldehyde crosslinker, Chem. Eng. J. 334(2018) 1085-1092. [42] A. Boujakhrout, E. Sánchez, P. Díez, A. Sánchez, P. Martínez-Ruiz, C. Parrado, J.M. Pingarrón, R. Villalonga, Single-walled carbon nanotubes/au-mesoporous silica janus nanoparticles as building blocks for the preparation of a bienzyme biosensor, ChemElectroChem 2(11) (2015) 1735-1741. [43] Y. Zhang, M.A. Arugula, M. Wales, J. Wild, A.L. Simonian, A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non-organophosphrus pesticides, Biosens. Bioelectron. 67(2015) 287-295. [44] A. Ruff, J. Szczesny, N. Marković, F. Conzuelo, S. Zacarias, I.A.C. Pereira, W. Lubitz, W. Schuhmann, A fully protected hydrogenase/polymer-based bioanode for high-performance hydrogen/glucose biofuel cells, Nat. Commun. 9(2018) 3675. [45] J. Liu, L. Zhang, C. Fu, Os-complex-based amperometric bienzyme biosensor for continuous determination of lactate in saliva, Anal. Methods 7(15) (2015) 6158-6164. [46] P. Gimenez-Gomez, M. Gutierrez-Capitan, F. Capdevila, A. Puig-Pujol, C. FernandezSanchez, C. Jimenez-Jorquera, Robust l-malate bienzymatic biosensor to enable the on-site monitoring of malolactic fermentation of red wines, Anal. Chim. Acta 954(2017) 105-113. [47] M. Dai, T. Huang, L. Chao, Q. Xie, Y. Tan, C. Chen, W. Meng, Horseradish peroxidasecatalyzed polymerization of L-DOPA for mono-/bi-enzyme immobilization and amperometric biosensing of H2O2 and uric acid, Talanta 149(2016) 117-123. [48] N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical biosensors, Chem. Soc. Rev. 39(5) (2010) 1747-1763. [49] P. Zucca, E. Sanjust, Inorganic materials as supports for covalent enzyme immobilization:methods and mechanisms, Molecules 19(9) (2014) 14139-14194. [50] M. Mathew, N. Sandhyarani, Detection of glucose using immobilized bienzyme on cyclic bisureas-gold nanoparticle conjugate, Anal. Biochem. 459(2014) 31-38. [51] M. Delvaux, A. Walcarius, S. Demoustier-Champagne, Bienzyme HRP-GOx-modified gold nanoelectrodes for the sensitive amperometric detection of glucose at low overpotentials, Biosens. Bioelectron. 20(8) (2005) 1587-1594. [52] A. Hatefi-Mehrjardi, Bienzyme self-assembled monolayer on gold electrode:An amperometric biosensor for carbaryl determination, Electrochim. Acta 114(2013) 394-402. [53] H. Zhang, R. Liu, J. Zheng, Selective determination of cholesterol based on cholesterol oxidase-alkaline phosphatase bienzyme electrode, Analyst 137(22) (2012) 5363-5367. [54] M. Gamella, S. Campuzano, F. Conzuelo, J.A. Curiel, R. Munoz, A.J. Reviejo, J.M. Pingarron, Integrated multienzyme electrochemical biosensors for monitoring malolactic fermentation in wines, Talanta 81(3) (2010) 925-933. [55] Y.D. Han, Y.H. Jang, H.C. Yoon, Cascadic multienzyme reaction-based electrochemical biosensors, Adv. Biochem. Eng. Biotechnol. 140(2014) 221-251. [56] A. Sassolas, L.J. Blum, B.D. Leca-Bouvier, Immobilization strategies to develop enzymatic biosensors, Biotechnol. Adv. 30(3) (2012) 489-511. [57] R. Wu, C. Ma, Y.C. Yong, Y.H.P. Job Zhang, Z. Zhu, Composition and distribution of internal resistance in an enzymatic fuel cell and its dependence on cell design and operating conditions, RSC Adv. 9(13) (2019) 7292-7300. [58] J.H. Lee, Y.D. Han, S.Y. Song, T.D. Kim, H.C. Yoon, Biosensor for organophosphorus pesticides based on the acetylcholine esterase inhibition mediated by choline oxidase bioelectrocatalysis, BioChip J. 4(3) (2010) 223-229. [59] A. Chaubey, K.K. Pande, V.S. Singh, B.D. Malhotra, Co-immobilization of lactate oxidase and lactate dehydrogenase on conducting polyaniline films, Anal. Chim. Acta 407(1-2) (2000) 97-103. [60] S.K. Sharma, R. Singhal, B.D. Malhotra, N. Sehgal, A. Kumar, Lactose biosensor based on Langmuir-Blodgett films of poly(3-hexyl thiophene), Biosens. Bioelectron. 20(3) (2004) 651-657. [61] D.R. Jeykumari, S.S. Narayanan, Fabrication of bienzyme nanobiocomposite electrode using functionalized carbon nanotubes for biosensing applications, Biosens. Bioelectron. 23(11) (2008) 1686-1693. [62] X. Chen, J. Zhu, R. Tian, C. Yao, Bienzymatic glucose biosensor based on three dimensional macroporous ionic liquid doped sol-gel organic-inorganic composite, Sensor. Actuat. B:Chem. 163(1) (2012) 272-280. [63] D. Sokic-Lazic, S.D. Minteer, Pyruvate/air enzymatic biofuel cell capable of complete oxidation, Electrochem. Solid-State Lett. 12(9) (2009) F26-F28. [64] D. Sokic-Lazic, A.R. de Andrade, S.D. Minteer, Utilization of enzyme cascades for complete oxidation of lactate in an enzymatic biofuel cell, Electrochim. Acta 56(28) (2011) 10772-10775. [65] R. Monošík, M. Stred'anský, G. Greif, E. Šturdík, Comparison of biosensors based on gold and nanocomposite electrodes for monitoring of malic acid in wine, Cent. Eur. J. Chem. 10(1) (2011) 157-164. [66] B. Wang, X. Ji, H. Zhao, N. Wang, X. Li, R. Ni, Y. Liu, An amperometric beta-glucan biosensor based on the immobilization of bi-enzyme on Prussian blue-chitosan and gold nanoparticles-chitosan nanocomposite films, Biosens. Bioelectron. 55(2014) 113-119. [67] R. Monošík, M. Stred'anský, E. Šturdík, A biosensor utilizing l-glutamate dehydrogenase and diaphorase immobilized on nanocomposite electrode for determination of L-glutamate in food samples, Food Anal. Method. 6(2) (2012) 521-527. [68] J. Singh, A. Roychoudhury, M. Srivastava, V. Chaudhary, R. Prasanna, D.W. Lee, S.H. Lee, B.D. Malhotra, Highly efficient bienzyme functionalized biocompatible nanostructured nickel ferrite-chitosan nanocomposite platform for biomedical application, J. Phys. Chem. C 117(16) (2013) 8491-8502. [69] R. Monosik, D. Ukropcova, M. Stredansky, E. Sturdik, Multienzymatic amperometric biosensor based on gold and nanocomposite planar electrodes for glycerol determination in wine, Anal. Biochem. 421(1) (2012) 256-261. [70] K.M. Manesh, P. Santhosh, A.I. Gopalan, K.-P. Lee, Silica-polyaniline based bienzyme cholesterol biosensor:Fabrication and characterization, Electroanal. 22(20) (2010) 2467-2474. [71] M. Shao, M.N. Zafar, C. Sygmund, D.A. Guschin, R. Ludwig, C.K. Peterbauer, W. Schuhmann, L. Gorton, Mutual enhancement of the current density and the coulombic efficiency for a bioanode by entrapping bi-enzymes with Os-complex modified electrodeposition paints, Biosens. Bioelectron. 40(1) (2013) 308-314. [72] F. Li, Z. Wang, Y. Feng, Construction of bienzyme biosensors based on combination of the one-step electrodeposition and covalent-coupled sol-gel process, Sci. China Ser. B:Chem. 52(12) (2009) 2269-2274. [73] M. Gu, J. Wang, Y. Tu, J. Di, Fabrication of reagentless glucose biosensors:A comparison of mono-enzyme GOD and bienzyme GOD-HRP systems, Sensor. Actuat. B:Chem. 148(2) (2010) 486-491. [74] A. Zebda, C. Gondran, A. Le Goff, M. Holzinger, P. Cinquin, S. Cosnier, Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes, Nat. Commun. 2(2011) 370. [75] B. Reuillard, A. Le Goff, C. Agnes, M. Holzinger, A. Zebda, C. Gondran, K. Elouarzaki, S. Cosnier, High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix, Phys. Chem. Chem. Phys. 15(14) (2013) 4892-4896. [76] K. Yamamoto, T. Matsumoto, S. Shimada, T. Tanaka, A. Kondo, Starchy biomasspowered enzymatic biofuel cell based on amylases and glucose oxidase multiimmobilized bioanode, Nat. Biotechnol. 30(5) (2013) 531-535. [77] V. Serafín, L. Agüí, P. Yáñez-Sedeño, J.M. Pingarrón, Glucosinolate amperometric bienzyme biosensor based on carbon nanotubes-gold nanoparticles composite electrodes, Electroanalysis 21(13) (2009) 1527-1532. [78] B.W. Park, R. Zheng, K.A. Ko, B.D. Cameron, D.Y. Yoon, D.S. Kim, A novel glucose biosensor using bi-enzyme incorporated with peptide nanotubes, Biosens. Bioelectron. 38(1) (2012) 295-301. [79] S. Yadav, A. Kumar, C.S. Pundir, Amperometric creatinine biosensor based on covalently coimmobilized enzymes onto carboxylated multiwalled carbon nanotubes/polyaniline composite film, Anal. Biochem. 419(2) (2011) 277-283. [80] F. Mazzei, F. Botrè, G. Favero, Peroxidase based biosensors for the selective determination of D,L-lactic acid and L-malic acid in wines, Microchem. J. 87(1) (2007) 81-86. [81] Y. Huang, W. Wang, Z. Li, X. Qin, L. Bu, Z. Tang, Y. Fu, M. Ma, Q. Xie, S. Yao, J.M, Hu, Horseradish peroxidase-catalyzed synthesis of poly(thiophene-3-boronic acid) biocomposites for mono-/bi-enzyme immobilization and amperometric biosensing, Biosens. Bioelectron. 44(2013) 41-47. [82] B. Reuillard, A. Le Goff, M. Holzinger, S. Cosnier, Non-covalent functionalization of carbon nanotubes with boronic acids for the wiring of glycosylated redox enzymes in oxygen-reducing biocathodes, J. Mater. Chem. B 2(16) (2014) 2228-2232. [83] D.N. Tran, K.J. Balkus, Perspective of recent progress in immobilization of enzymes, ACS Catal. 1(8) (2011) 956-968. [84] S. Xu, H. Qi, S. Zhou, X. Zhang, C. Zhang, Mediatorless amperometric bienzyme glucose biosensor based on horseradish peroxidase and glucose oxidase cross-linked to multiwall carbon nanotubes, Microchim. Acta 181(5-6) (2014) 535-541. [85] Q. Lang, L. Yin, J. Shi, L. Li, L. Xia, A. Liu, Co-immobilization of glucoamylase and glucose oxidase for electrochemical sequential enzyme electrode for starch biosensor and biofuel cell, Biosens. Bioelectron. 51(2014) 158-163. [86] J. Liu, S. Sun, H. Shang, J. Lai, L. Zhang, Electrochemical biosensor based on bienzyme and carbon nanotubes incorporated into an Os-complex thin film for continuous glucose detection in human saliva, Electroanal. 28(9) (2016) 2016-2021. [87] F. Tasca, L. Gorton, M. Kujawa, I. Patel, W. Harreither, C.K. Peterbauer, R. Ludwig, G. Noll, Increasing the coulombic efficiency of glucose biofuel cell anodes by combination of redox enzymes, Biosens. Bioelectron. 25(7) (2010) 1710-1716. [88] Y.H. Kim, E. Campbell, J. Yu, S.D. Minteer, S. Banta, Complete oxidation of methanol in biobattery devices using a hydrogel created from three modified dehydrogenases, Angew. Chem. Int. Ed. 52(5) (2013) 1437-1440. [89] S. Hou, Z. Ou, Q. Chen, B. Wu, Amperometric acetylcholine biosensor based on selfassembly of gold nanoparticles and acetylcholinesterase on the sol-gel/multiwalled carbon nanotubes/choline oxidase composite-modified platinum electrode, Biosens. Bioelectron. 33(1) (2012) 44-49. [90] M. Christwardana, Combination of physico-chemical entrapment and crosslinking of low activity laccase-based biocathode on carboxylated carbon nanotube for increasing biofuel cell performance, Enzyme Microb. Technol. 106(2017) 1-10. [91] Z.Q. Wu, W.Z. Jia, K. Wang, J.J. Xu, H.Y. Chen, X.H. Xia, Exploration of two-enzyme coupled catalysis system using scanning electrochemical microscopy, Anal. Chem. 84(24) (2012) 10586-10592. [92] H. Chen, F. Xi, X. Gao, Z. Chen, X. Lin, Bienzyme bionanomultilayer electrode for glucose biosensing based on functional carbon nanotubes and sugar-lectin biospecific interaction, Anal. Biochem. 403(1-2) (2010) 36-42. [93] S.B. Adeloju, A.T. Lawal, Fabrication of a bilayer potentiometric phosphate biosensor by cross-link immobilization with bovine serum albumin and glutaraldehyde, Anal. Chim. Acta 691(1-2) (2011) 89-94. [94] R. Yasujima, K. Yasueda, T. Horiba, S. Komaba, Multi-enzyme immobilized anodes utilizing maltose fuel for biofuel cell applications, Chemelectrochem 5(16) (2018) 2271-2278. [95] U. Saxena, M. Das, S. Ahmad, L. Barbora, M. Borthakur, A. Verma, U. Bora, P. Goswami, Multiwalled carbon nanotube-based bi-enzyme electrode for total cholesterol estimation in human serum, J. Exp. Nanosci. 6(1) (2011) 84-95. [96] H.S. Mansur, A.A.P. Mansur, M.E. Marques, Multi-enzymatic Systems with Designed 3D Architectures for Constructing Food Bioanalytical Sensors, Food Anal. Method. 7(6) (2014) 1166-1178. [97] J. Fu, Y.R. Yang, A. Johnson-Buck, M. Liu, Y. Liu, N.G. Walter, N.W. Woodbury, H. Yan, Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm, Nat. Nanotechnol. 9(7) (2014) 531-536. [98] J. Fu, M. Liu, Y. Liu, N.W. Woodbury, H. Yan, Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures, J. Am. Chem. Soc. 134(12) (2012) 5516-5519. [99] G. Piperberg, O.I. Wilner, O. Yehezkeli, R. Tel-Vered, I. Willner, Control of bioelectrocatalytic transformations on DNA scaffolds, J. Am. Chem. Soc. 131(25) (2009) 8724-8725. [100] M. Mathesh, J. Liu, C.J. Barrow, W. Yang, Graphene-oxide-based enzyme nanoarchitectonics for substrate channeling, Chemistry 23(2) (2017) 304-311. [101] D. Meng, R. Wu, J. Wang, Z. Zhu, C. You, Acceleration of cellodextrin phosphorolysis for bioelectricity generation from cellulosic biomass by integrating a synthetic two-enzyme complex into an in vitro synthetic enzymatic biosystem, Biotechnol. Biofuels 12(2019) 267. [102] M. J. Moehlenbroc, M. T. Meredith, S. D. Minteer, Bioelectrocatalytic oxidation of glucose in CNT impregnated hydrogels:Advantages of synthetic enzymatic metabolon formation, ACS Catal. 2(1) (2011)17-25. [103] M.J. Moehlenbrock, T.K. Toby, L.N. Pelster, S.D. Minteer, Metabolon catalysts:An efficient model for multi-enzyme cascades at electrode surfaces, ChemCatChem 3(3) (2011) 561-570. [104] M.J. Moehlenbrock, T.K. Toby, A. Waheed, S.D. Minteer, Metabolon catalyzed pyruvate/air biofuel cell, J. Am. Chem. Soc. 132(18) (2010) 6288-6289. [105] A. Alshammari, M.G. Posner, A. Upadhyay, F. Marken, S. Bagby, A. Ilie, A modular bioplatform based on a versatile supramolecular multienzyme complex directly attached to graphene, ACS Appl. Mater. Interfaces 8(32) (2016) 21077-21088. [106] L. Li, B. Liang, F. Li, J. Shi, M. Mascini, Q. Lang, A. Liu, Co-immobilization of glucose oxidase and xylose dehydrogenase displayed whole cell on multiwalled carbon nanotube nanocomposite films modified electrode for simultaneous voltammetric detection of D-glucose and D-xylose, Biosens. Bioelectron. 42(2013) 156-162. [107] L. Amir, S.A. Carnally, J. Rayo, S. Rosenne, S.M. Yerushalmi, O. Schlesinger, M.M. Meijler, L. Alfonta, Surface display of a redox enzyme and its site-specific wiring to gold electrodes, J. Am. Chem. Soc. 135(1) (2013) 70-73. [108] A. Szczupak, D. Aizik, S. Morais, Y. Vazana, Y. Barak, E.A. Bayer, L. Alfonta, The electrosome:A surface-displayed enzymatic cascade in a biofuel cell's anode and a high-density surface-displayed biocathodic enzyme, Nanomaterials (Basel) 7(7) (2017) 153. [109] K. Bahartan, L. Amir, A. Israel, R.G. Lichtenstein, L. Alfonta, In situ fuel processing in a microbial fuel cell, ChemSusChem 5(9) (2012) 1820-1825. [110] F. Liu, S. Banta, W. Chen, Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production, Chem. Commun. (Camb) 49(36) (2013) 3766-3768. [111] H. Wu, C. Tian, X. Song, C. Liu, D. Yang, Z. Jiang, Methods for the regeneration of nicotinamide coenzymes, Green Chem. 15(7) (2013) 1773. [112] Y. Zhang, H. Hess, Toward rational design of high-efficiency enzyme cascades, ACS Catal. 7(9) (2017) 6018-6027. [113] J.P.H. Steven, D. Sprules, Stephen A. Wring, Robin Pittson, A reagentless, disposable biosensor for lactic acid based on a screen-printed carbon electrode containing Meldola's Blue and coated with lactate dehydrogenase, NAD+ and cellulose acetate, Anal. Chim. Acta 304(1995) 17-24. [114] J.P.H. Steven, D. Sprules, Robin Pittson, Stephen A. Wring, Evaluation of a new eisposable screen-printed sensor strip for the measurement of NADH and its modification to produce a lactate biosensor employing microliter volumes, Electroanal. 8(6) (1996) 539-543. [115] S.D. Sprules, I.C. Hartley, R. Wedge, J.P. Hart, R Pittson, A disposable reagentless screen-printed amperometric biosensor for the measurement of alcohol in beverages, Anal. Chim. Acta 329(1996) 215-221. [116] J.P. Hart, A.K. Abass, D.C. Cowell, A. Chappell, Development of a disposable amperometric NH4 biosensor based on a chemically modified screen-printed carbon electrode coated with glutamate dehydrogenase, 2-Oxoglutarate, and NADH, Electroanal. 11(1999) 406-411. [117] H. Zhou, Z. Zhang, P. Yu, L. Su, T. Ohsaka, L. Mao, Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors, Langmuir 26(8) (2010) 6028-6032. [118] H. Sakai, T. Nakagawa, Y. Tokita, T. Hatazawa, T. Ikeda, S. Tsujimura, K. Kano, A high-power glucose/oxygen biofuel cell operating under quiescent conditions, Energ. Environ. Sci. 2(1) (2009) 133-138. [119] S. Fujita, S. Yamanoi, K. Murata, H. Mita, T. Samukawa, T. Nakagawa, H. Sakai, Y. Tokita, A repeatedly refuelable mediated biofuel cell based on a hierarchical porous carbon electrode, Sci. Rep. 4(2014) 4937. [120] E.K. Amos Bardea, F. Andreas, Bu1ckmann, and Itamar Willner, NAD+-dependent enzyme electrodes:Electrical contact of cofactor-dependent enzymes and electrodes, J. Am. Chem. Soc. 119(39) (1997) 9114-9119. [121] B.L. Hassler, N. Kohli, J.G. Zeikus, I Lee, R.M. Worden, Renewable dehydrogenasebased interfaces for bioelectronic applications, Langmuir 23(2007) 7127-7133. [122] Y.M. Yan, O. Yehezkeli, I. Willner, Integrated, electrically contacted NAD(P)+-dependent enzyme-carbon nanotube electrodes for biosensors and biofuel cell applications, Chemistry 13(36) (2007) 10168-10175. [123] A. Mahadevan, T. Fernando, S. Fernando, Iron-sulfur-based single molecular wires for enhancing charge transport in enzyme-based bioelectronic systems, Biosens. Bioelectron. 78(2016) 477-482. [124] A. Mahadevan, S. Fernando, An improved glycerol biosensor with an Au-FeS-NADglycerol-dehydrogenase anode, Biosens. Bioelectron. 92(2017) 417-424. [125] H. Song, C. Ma, P. Liu, C. You, J. Lin, Z. Zhu, A hybrid CO2 electroreduction system mediated by enzyme-cofactor conjugates coupled with Cu nanoparticlecatalyzed cofactor regeneration, J. CO2 Util. 34(2019) 568-575. [126] X. Huang, L. Zhang, Z. Zhang, S. Guo, H. Shang, Y. Li, J. Liu, Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes, Biosens. Bioelectron. (2019) 40-52124-125. [127] X. Yu, W. Lian, J. Zhang, H. Liu, Multi-input and -output logic circuits based on bioelectrocatalysis with horseradish peroxidase and glucose oxidase immobilized in multi-responsive copolymer films on electrodes, Biosens. Bioelectron. 80(2016) 631-639. [128] A. Poghossian, E. Katz, M.J. Schoning, Enzyme logic AND-Reset and OR-Reset gates based on a field-effect electronic transducer modified with multi-enzyme membrane, Chem. Commun. (Camb) 51(30) (2015) 6564-6567. [129] D. Liu, H. Liu, N. Hu, pH-, sugar-, and temperature-sensitive electrochemical switch amplified by enzymatic reaction and controlled by logic gates based on semiinterpenetrating polymer networks, J. Phys. Chem. B 116(5) (2012) 1700-1708. [130] V. Bocharova, T.K. Tam, J. Halamek, M. Pita, E. Katz, Reversible gating controlled by enzymes at nanostructured interface, Chem. Commun. (Camb) 46(12) (2010) 2088-2090. [131] A. Efrati, C.-H. Lu, D. Michaeli, R. Nechushtai, S. Alsaoub, W. Schuhmann, I. Willner, Assembly of photo-bioelectrochemical cells using photosystem I-functionalized electrodes, Nat. Energ. 1(2) (2016) 15021. [132] R. Marcus, N. Sutin, Electron transfers in chemistry and biology, BBA-Rev. Bioenergetics 811(1985) 265-322. [133] R.E. Sharp, S. Chapman, Mechanisms for regulating electron transfer in multi-centre redox proteins, BBA-Protein Struct. M. 1432(1999) 143-158. [134] J.R. Winkler, H.B. Gray, Long-range electron tunneling, J. Am. Chem. Soc. 136(8) (2014) 2930-2939. [135] Y. Song, L. Wan, Y. Wang, S. Zhao, H. Hou, L. Wang, Electron transfer and electrocatalytics of cytochrome c and horseradish peroxidase on DNA modified electrode, Bioelectrochemistry 85(2012) 29-35. [136] F. Lisdat, R. Dronov, H. Möhwald, F.W. Scheller, D.G. Kurth, Self-assembly of electro-active protein architectures on electrodes for the construction of biomimetic signal chains, Chem. Commun. (3) (2009) 274-283. [137] S. Rengaraj, R. Haddad, E. Lojou, N. Duraffourg, M. Holzinger, A. Le Goff, V. Forge, Interprotein electron transfer between FeS-protein nanowires and oxygentolerant NiFe hydrogenase, Angew. Chem. Int. Ed. 56(27) (2017) 7774-7778. [138] S. C. Feifel, A. Kapp, F. Lisdat, Protein multilayer architectures on electrodes for analyte detection, Adv. Biochem. Eng. Biotechnol., 140(2013)253-298. [139] D. Ciornii, M. Riedel, K.R. Stieger, S.C. Feifel, M. Hejazi, H. Lokstein, A. Zouni, F. Lisdat, Bioelectronic circuit on a 3D electrode architecture:Enzymatic catalysis interconnected with photosystem I, J. Am. Chem. Soc. 139(46) (2017) 16478-16481. [140] Y.H.P. Zhang, Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations:Challenges and opportunities, Biotechnol. Bioeng. 105(4) (2010) 663-677. [141] V.G. Eijsink, S. Gaseidnes, T.V. Borchert, B. van den Burg, Directed evolution of enzyme stability, Biomol. Eng. 22(1-3) (2005) 21-30. [142] A.R. Pereira, R.A.S. Luz, F.C.D.A. Lima, F.N. Crespilho, Protein oligomerization based on brønsted acid reaction, ACS Catal. 7(4) (2017) 3082-3088. [143] S. Krishnan, F.A. Armstrong, Order-of-magnitude enhancement of an enzymatic hydrogen-air fuel cell based on pyrenyl carbon nanostructures, Chem. Sci. 3(4) (2012) 1015-1023. [144] C. Di Bari, A. Goni-Urtiaga, M. Pita, S. Shleev, M.D. Toscano, R. Sainz, A.L. De Lacey, Fabrication of high surface area graphene electrodes with high performance towards enzymatic oxygen reduction, Electrochim. Acta 191(2016) 500-509. [145] S. Gentil, M. Carriere, S. Cosnier, S. Gounel, N. Mano, A. Le Goff, Direct electrochemistry of bilirubin oxidase from magnaporthe orizae on covalently-functionalized MWCNT for the design of high-performance oxygen-reducing biocathodes, Chemistry 24(33) (2018) 8404-8408. [146] M.T. Meredith, M. Minson, D. Hickey, K. Artyushkova, D.T. Glatzhofer, S.D. Minteer, Anthracene-modified multi-walled carbon nanotubes as direct electron transfer scaffolds for enzymatic xxygen reduction, ACS Catal. 1(12) (2011) 1683-1690. [147] X. Xiao, H.Q. Xia, R. Wu, L. Bai, L. Yan, E. Magner, S. Cosnier, E. Lojou, Z. Zhu, A. Liu, Tackling the challenges of enzymatic (bio)fuel cells, Chem. Rev. 119(16) (2019) 9509-9558. [148] G. Güven, R. Prodanovic, U. Schwaneberg, Protein engineering-An option for enzymatic biofuel cell design, Electroanal. 22(7-8) (2010) 765-775. [149] R.D. Milton, S.D. Minteer, Direct enzymatic bioelectrocatalysis:Differentiating between myth and reality, J. R. Soc. Interface 14(131) (2017) 20170253. [150] K. Elouarzaki, D. Cheng, A.C. Fisher, J.M. Lee, Coupling orientation and mediation strategies for efficient electron transfer in hybrid biofuel cells, Nat. Energ. 3(7) (2018) 574-581. [151] D. Ciornii, M. Riedel, K.R. Stieger, S.C. Feifel, M. Hejazi, H. Lokstein, A. Zouni, F. Lisdat, Bioelectronic circuit on a 3D electrode architecture:Enzymatic catalysis interconnected with photosystem I, J. Am. Chem. Soc. 139(46) (2017) 16478-16481. [152] H.R. Luckarift, B.S. Ku, J.S. Dordick, J.C. Spain, Silica-immobilized enzymes for multistep synthesis in microfluidic devices, Biotechnol. Bioeng. 98(3) (2007) 701-705. [153] X. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment, Chem. Commun. (Camb) 51(69) (2015) 13408-13411. |
[1] | Xinlei Wei, Pingping Han, Chun You. Facilitation of cascade biocatalysis by artificial multi-enzyme complexes—A review [J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2799-2809. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 375
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 265
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||