Chinese Journal of Chemical Engineering ›› 2020, Vol. 28 ›› Issue (11): 2837-2847.DOI: 10.1016/j.cjche.2020.05.035
Previous Articles Next Articles
Qianqian Hou, Nanxing Li, Yuanyuan Chao, Shihao Li, Lin Zhang
Received:
2020-02-28
Revised:
2020-05-28
Online:
2020-12-31
Published:
2020-11-28
Contact:
Lin Zhang
Supported by:
Qianqian Hou, Nanxing Li, Yuanyuan Chao, Shihao Li, Lin Zhang
通讯作者:
Lin Zhang
基金资助:
Qianqian Hou, Nanxing Li, Yuanyuan Chao, Shihao Li, Lin Zhang. Design and regulation of the surface and interfacial behavior of protein molecules[J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2837-2847.
Qianqian Hou, Nanxing Li, Yuanyuan Chao, Shihao Li, Lin Zhang. Design and regulation of the surface and interfacial behavior of protein molecules[J]. 中国化学工程学报, 2020, 28(11): 2837-2847.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.05.035
[1] N. Zhu, D. Zhang, D. Wang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, A novel coronavirus from patients with pneumonia in China, 2019, N. Engl. J. Med. 382(2020) 727-733. [2] S. Jiang, L. Du, Z. Shi, An emerging coronavirus causing pneumonia outbreak in Wuhan, China:calling for developing therapeutic and prophylactic strategies, Emerging Microbes Infect. 9(2020) 275-277. [3] B. Li, H. Si, Y. Zhu, X. Yang, D.E. Anderson, Z. Shi, L. Wang, P. Zhou, Discovery of bat coronaviruses through surveillance and probe capture-based next-generation sequencing, mSphere 5(2020) e120-e170. [4] M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong, G. Xiao, Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res. 30(2020) 269-271. [5] W. Daniel, W. Nianshuang, S.C. Kizzmekia, J.A. Goldsmith, H. Ching-Lin, A. Olubukola, B. Graham, J. McLellan, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science 367(2020) 1260. [6] W.J. Guan, Z.Y. Ni, Y. Hu, W.H. Liang, C.Q. Ou, J. He, et al., Clinical Characteristics of 2019 Novel Coronavirus Infection in China, N. Engl. J. Med. (2020)https://www.medrxiv.org/content/10.1101/2020.02.06.20020974v1. [7] C. Soto, S. Pritzkow, Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases, Nat. Neurosci. 21(2018) 1332-1340. [8] C. Scheckel, A. Aguzzi, Prions, prionoids and protein misfolding disorders, Nat. Rev. Genet. 19(2018) 405-418. [9] A. Mullard, 2013 FDA drug approvals, Nat. Rev. Drug Discov. 13(2014) 85-89. [10] Y. Li, X. Liu, X. Dong, L. Zhang, Y. Sun, Biomimetic design of affinity peptide ligand for capsomere of virus-like particle, Langmuir 30(2014) 8500-8508. [11] C.C.C.R. de Carvalho, Enzymatic and whole cell catalysis:Finding new strategies for old processes, Biotechnol. Adv. 29(2011) 75-83. [12] L. Zhang, D. Lu, Z. Liu, How native proteins aggregate in solution:A dynamic Monte Carlo simulation, Biophys. Chem. 133(2008) 71-80. [13] L. Yu, L. Zhang, Y. Sun, Protein behavior at surfaces:Orientation, conformational transitions and transport, J. Chromatogr. A 1382(2015) 118-134. [14] J.B. Bale, S. Gonen, Y. Liu, W. Sheffler, D. Ellis, Accurate design of megadaltonscale two-component icosahedral protein complexes, Science 353(2016) 389-394. [15] J.H. Mills, W. Sheffler, M.E. Ener, P.J. Almhjell, G. Oberdorfer, J.H. Pereira, F. Parmeggiani, B. Sankaran, P.H. Zwart, D. Baker, Computational design of a homotrimeric metalloprotein with a trisbipyridyl core, Proc. Natl. Acad. Sci. 113(2016) 15012-15017. [16] L. Zhang, L.H.L. Lua, A.P.J. Middelberg, Y. Sun, N.K. Connors, Biomolecular engineering of virus-like particles aided by computational chemistry methods, Chem. Soc. Rev. 44(2015) 8608-8618. [17] K. Steiner, H. Schwab, Recent advances in rational approaches for enzyme engineering, Comput. Struct. Biotechnol. J. 2(2012), e201209010. [18] K. Chen, F.H. Arnold, Tuning the Activity of an Enzyme for Unusual Environments:Sequential Random Mutagenesis of Subtilisin E for Catalysis in Dimethylformamide, Proc. Natl. Acad. Sci. U. S. A. 90(1993) 5618-5622. [19] P.C. Willem, Stemmer, Rapid evolution of a protein in vitro by DNA shuffling, Nature 370(1994) 389-391. [20] Y. Tian, J. Xu, R. Peng, A. Xiong, H. Xu, W. Zhao, X. Fu, H. Han, Q. Yao, Mutation by DNA shuffling of 5-enolpyruvylshikimate-3-phosphate synthase fromMalus domestica for improved glyphosate resistance, Plant Biotechnol. J. 11(2013) 829-838. [21] X. Wang, Q. Li, T. Bao, W. Cong, W. Song, X. Zhou, In vitro rapid evolution of fungal immunomodulatory proteins by DNA family shuffling, Appl. Microbiol. Biotechnol. 97(2013) 2455-2465. [22] J.A. Wells, M. Vasser, D.B. Powers, Cassette mutagenesis:an efficient method for generation of multiple mutations at defined sites, Gene 34(1985) 315-323. [23] A.V. Shivange, A. Dennig, U. Schwaneberg, Multi-site saturation by OmniChange yields a pH- and thermally improved phytase, J. Biotechnol. 170(2014) 68-72. [24] T.S. Wong, Sequence saturation mutagenesis (SeSaM):a novel method for directed evolution, Nucleic Acids Res. 32(2004) 26e-26. [25] Y. Zhang, Y. Wu, N. Xu, Q. Zhao, H. Yu, J. Xu, Engineering of Cyclohexanone Monooxygenase for the Enantioselective Synthesis of (S)-Omeprazole, ACS Sustain. Chem. Eng. 7(2019) 7218-7226. [26] Y. Qi, F. Li, Q. Chen, Z. Zhang, Z. Luan, J. Xu, H. Yu, Protein termini relocation plus random mutation:A new strategy for finding key sites in esterase evolution, Mol. Catal. 460(2018) 94-99. [27] X. Gong, Z. Qin, F. Li, B. Zeng, G. Zheng, J. Xu, Development of an Engineered Ketoreductase with Simultaneously Improved Thermostability and Activity for Making a Bulky Atorvastatin Precursor, ACS Catal. 9(2018) 147-153. [28] C. Tang, H. Shi, Z. Jiao, H. Shi, L. Yao, J. Xu, Y. Kan, Exploitation of cold-active cephalosporin C acylase by computer-aided directed evolution and its potential application in low-temperature biosynthesis of 7-aminocephalosporanic acid, J. Chem. Technol. Biotechnol. 93(2018) 2925-2930. [29] X. Jiao, J. Pan, X. Kong, J. Xu, Protein engineering of aldolase LbDERA for enhanced activity toward real substrates with a high-throughput screening method coupled with an aldehyde dehydrogenase, Biochem. Biophys. Res. Commun. 482(2017) 159-163. [30] M. Zheng, K. Chen, R. Wang, H. Li, C. Li, J. Xu, Engineering 7β-Hydroxysteroid Dehydrogenase for Enhanced Ursodeoxycholic Acid Production by Multiobjective Directed Evolution, J. Agric. Food Chem. 65(2017) 1178-1185. [31] X. Luo, J. Zhao, C. Li, Y. Bai, M.T. Reetz, H. Yu, J. Xu, Combinatorial evolution of phosphotriesterase toward a robust malathion degrader by hierarchical iteration mutagenesis, Biotechnol. Bioeng. 113(2016) 2350-2357. [32] L. Huang, J. Xu, H. Yu, Significantly improved thermostability of a reductase CgKR1 from Candida glabrata with a key mutation at Asp 138 for enhancing bioreduction of aromatic α-keto esters, J. Biotechnol. 203(2015) 54-61. [33] B. Ma, X. Kong, H. Yu, Z. Zhang, S. Dou, Y. Xu, Y. Ni, J. Xu, Increased Catalyst Productivity in α-Hydroxy Acids Resolution by Esterase Mutation and Substrate Modification, ACS Catal. 4(2014) 1026-1031. [34] Z. Xu, Y. Tian, Y. Zhu, Computational design of thermostable mutants for cephalosporin C acylase from Pseudomonas strain SE83, Comput. Chem. Eng. 116(2018) 112-121. [35] J. He, X. Huang, J. Xue, Y. Zhu, Computational redesign of penicillin acylase for cephradine synthesis with high kinetic selectivity, Green Chem. 20(2018) 5484-5490. [36] Y. Tian, Z. Xu, X. Huang, Y. Zhu, Computational design to improve catalytic activity of cephalosporin C acylase from Pseudomonas strain N176, RSC Adv. 7(2017) 30370-30375. [37] Y. Tian, X. Huang, Q. Li, Y. Zhu, Computational design of variants for cephalosporin C acylase from Pseudomonas strain N176 with improved stability and activity, Appl. Microbiol. Biotechnol. 101(2017) 621-632. [38] X. Huang, J. Xue, M. Lin, Y. Zhu, Use of an Improved Matching Algorithm to Select Scaffolds for Enzyme Design Based on a Complex Active Site Model, PLoS ONE 11(2016), e0156559.. [39] Q. Mu, Y. Cui, Y. Tian, M. Hu, Y. Tao, B. Wu, Thermostability improvement of the glucose oxidase from Aspergillus niger for efficient gluconic acid production via computational design, Int. J. Biol. Macromol. 136(2019) 1060-1068. [40] Y. Bu, Y. Cui, Y. Peng, M. Hu, Y.E. Tian, Y. Tao, B. Wu, Engineering improved thermostability of the GH11 xylanase from Neocallimastix patriciarum via computational library design, Appl. Microbiol. Biotechnol. 102(2018) 3675-3685. [41] X. Kong, Q. Ma, J. Zhou, B. Zeng, J. Xu, A Smart Library of Epoxide Hydrolase Variants and the Top Hits for Synthesis of (S)-β-Blocker Precursors, Angew. Chem. Int. Ed. 53(2014) 6641-6644. [42] L. Huang, H. Ma, H. Yu, J. Xu, Altering the Substrate Specificity of ReductaseCg KR1 fromCandida glabrataby Protein Engineering for Bioreduction of Aromatic α-Keto Esters, Adv. Synth. Catal. 356(2014) 1943-1948. [43] B. Wu, W. Szymański, H.J. Wijma, C.G. Crismaru, S. de Wildeman, G.J. Poelarends, et al., Engineering of an enantioselective tyrosine aminomutase by mutation of a single active site residue in phenylalanine aminomutase, Chem. Commun. 46(2010) 8157(Cambridge, U. K.). [44] F. Guo, S. Franzen, L. Ye, J. Gu, H. Yu, Controlling enantioselectivity of esterase in asymmetric hydrolysis of aryl prochiral diesters by introducing aromatic interactions, Biotechnol. Bioeng. 111(2014) 1729-1739. [45] F. Li, X. Kong, Q. Chen, Y. Zheng, Q. Xu, F. Chen, L. Fan, Q.G. Lin, J. Zhou, H. Yu, J. Xu, Regioselectivity Engineering of Epoxide Hydrolase:Near-Perfect Enantioconvergence through a Single Site Mutation, ACS Catal. 8(2018) 8314-8317. [46] R. Li, A. Li, J. Zhao, Q. Chen, N. Li, H. Yu, J. Xu, Engineering P450LaMO stereospecificity and product selectivity for selective C-H oxidation of tetralin-like alkylbenzenes, Catal. Sci. Technol. 8(2018) 4638-4644. [47] Y. Gong, G. Xu, Q. Chen, J. Yin, C. Li, J. Xu, Iterative multitarget evolution dramatically enhances the enantioselectivity and catalytic efficiency of Bacillus subtilis esterase towards bulky benzoate esters of dl-menthol, Catal. Sci. Technol. 6(2016) 2370-2376. [48] R. Li, H.J. Wijma, L. Song, Y. Cui, M. Otzen, Y.E. Tian, J. Du, T. Li, D. Niu, Y. Chen, J. Feng, J. Han, H. Chen, Y. Tao, D. Janssen, B.B. Wu, Computational redesign of enzymes for regio- and enantioselective hydroamination, Nat. Chem. Biol. 14(2018) 664-670. [49] Y. Bai, Q. Luo, J. Liu, Protein self-assembly via supramolecular strategies, Chem. Soc. Rev. 45(2016) 2756-2767. [50] Y.P. Chuan, Y.Y. Fan, L.H.L. Lua, A.P.J. Middelberg, Virus assembly occurs following a pH- or Ca2+-triggered switch in the thermodynamic attraction between structural protein capsomeres, J. R. Soc. Interface 7(2009) 409-421. [51] L. Zhang, R. Tang, S. Bai, N.K. Connors, L.H.L. Lua, Y.P. Chuan, A. Middelberg, Y. Sun, Molecular energetics in the capsomere of virus-like particle revealed by molecular dynamics simulations, J. Phys. Chem. B 117(2013) 5411-5421. [52] L. Zhang, R. Tang, S. Bai, N.K. Connors, L.H.L. Lua, Y.P. Chuan, A. Middelberg, Y. Sun, Energetic changes caused by antigenic module insertion in a virus-like particle revealed by experiment and molecular dynamics simulations, PLoS One 9(2014), e107313.. [53] L. Zhang, H. Chen, Construction and Characteristics of Charge Modified-Hepatitis B Virus Core Protein Virus-Like Particles, J. Tianjin University (Science and Technology). 53(2020) 450-458. [54] S. Gonen, F. DiMaio, T. Gonen, D. Baker, Design of ordered two-dimensional arrays mediated by noncovalent protein-protein interfaces, Science (New York, N.Y.) 348(2015) 1365-1368. [55] N.P. King, J.B. Bale, W. Sheffler, D.E. McNamara, S. Gonen, T. Gonen, T. Yeates, D. Baker, Accurate design of co-assembling multi-component protein nanomaterials, Nature 510(2014) 103-108. [56] N.P. King, W. Sheffler, M.R. Sawaya, B.S. Vollmar, J.P. Sumida, I. Andre, T. Gonen, T. Yeates, D. Baker, Computational design of self-assembling protein nanomaterials with atomic level accuracy, Science 336(2012) 1171-1174. [57] R. Dong, Y. Zhou, X. Huang, X. Zhu, Y. Lu, J. Shen, Functional supramolecular polymers for biomedical applications, Adv. Mater. 27(2015) 498-526. [58] J. Du, J. Jin, M. Yan, Y. Lu, Synthetic nanocarriers for intracellular protein delivery, Curr. Drug Metab. 13(2012) 82-92. [59] Q. Zhu, M. Yan, L. He, X. Zhu, Y. Lu, D. Yan, Fabrication of porous scaffolds with protein nanogels, Sci. China Chem. 54(2011) 961-967. [60] J.K. Oh, R. Drumright, D.J. Siegwart, K. Matyjaszewski, The development of microgels/nanogels for drug delivery applications, Prog. Polym. Sci. 33(2008) 448-477. [61] J. Ge, D. Lu, J. Wang, M. Yan, Y. Lu, Z. Liu, Molecular fundamentals of enzyme nanogels, The J. Phys. Chem. B. 112(2008) 14319-14324. [62] X. Wu, J. Ge, J. Zhu, Y. Zhang, Y. Yong, Z. Liu, A general method for synthesizing enzyme-polymer conjugates in reverse emulsions using Pluronic as a reactive surfactant, Chem. Commun. 51(2015) 9674-9677. [63] M. Yan, J. Ge, Z. Liu, P. Ouyang, Encapsulation of Single Enzyme in Nanogel with Enhanced Biocatalytic Activity and Stability, J. Am. Chem. Soc. 128(2006) 11008-11009. [64] R. Wang, Y. Zhang, J. Huang, D. Lu, J. Ge, Z. Liu, Substrate imprinted lipase nanogel for one-step synthesis of chloramphenicol palmitate, Green Chem. 15(2013) 1155-1158. [65] M. Lin, D. Lu, J. Zhu, C. Yang, Y. Zhang, Z. Liu, Magnetic enzyme nanogel (MENG):a universal synthetic route for biocatalysts, Chem. Commun. 48(2012) 3315-3317(Camb). [66] J. Ge, D. Lu, J. Wang, Z. Liu, Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide, Biomacromolecules 10(2009) 1612-1618. [67] M. Yan, Z. Liu, D. Lu, Z. Liu, Fabrication of single carbonic anhydrase nanogel against denaturation and aggregation at high temperature, Biomacromolecules. 8(2007) 560-565. [68] J. Zhang, J. Du, M. Yan, A. Dhaliwal, J. Wen, F. Liu, T. Segura, Y. Lu, Synthesis of protein nano-conjugates for cancer therapy, Nano Res. 4(2011) 425-433. [69] Y. Liu, J. Li, Y. Lu, Enzyme therapeutics for systemic detoxification, Adv. Drug Deliv. Rev. 90(2015) 24-39. [70] M. Yan, J. Du, Z. Gu, M. Liang, Y. Hu, W. Zhang, S. Priceman, L. Wu, Z. Zhou, Z. Liu, T. Segura, Y. Tang, Y. Lu, A novel intracellular protein delivery platform based on single-protein nanocapsules, Nat. Nanotechnol. 5(2010) 48-53. [71] S. Liang, Y. Liu, X. Jin, G. Liu, J. Wen, L. Zhang, J. Li, X. Yuan, I. Chen, W. Chen, H. Wang, L. Shi, X. Zhu, Y. Lu, Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins, Nano Res. 9(2016) 1022-1031. [72] L. Zhang, Y. Liu, G. Liu, D. Xu, S. Liang, X. Zhu, Y. Lu, H. Wang, Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer, Nano Res. 9(2016) 2424-2432. [73] M. Zhao, D. Xu, D. Wu, J.W. Whittaker, R. Terkeltaub, Y. Lu, Nanocapsules of oxalate oxidase for hyperoxaluria treatment, Nano Res. 11(2018) 2682-2688. [74] D. Xu, H. Han, Y. He, H. Lee, D. Wu, F. Liu, X. Liu, Y. Liu, Y. Lu, C. Ji, A hepatocyte-mimicking antidote for alcohol intoxication, Adv. Mater. 30(2018) 1707443. [75] J. Wen, S.M. Anderson, J. Du, M. Yan, J. Wang, M. Shen, Y. Lu, T. Segura, Controlled protein delivery based on enzyme-responsive nanocapsules, Adv. Mater. 23(2011) 4549-4553. [76] M. Hou, H. Zhao, Y. Feng, J. Ge, Synthesis of patterned enzyme-metal-organic framework composites by ink-jet printing, Bioresources and Bioprocessing 4(2017) 40. [77] X. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment, Chem. Commun. 51(2015) 13408-13411. [78] C. Hu, Y. Bai, M. Hou, Y. Wang, L. Wang, X. Cao, C. Chan, H. Sun, W. Li, J. Ge, K. Ren, Defect-induced activity enhancement of enzyme-encapsulated metal-organic frameworks revealed in microfluidic gradient mixing synthesis, Sci.Adv. 6(2020), eaax5785. [79] X. Wu, H. Yue, Y. Zhang, X. Gao, X. Li, L. Wang, Y. Cao, M. Hou, H. An, L. Zhang, S. Li, J. Ma, H. Lin, Y. Fu, H. Gu, W. Lou, W. Wei, R. Zare, J. Ge, Packaging and delivering enzymes by amorphous metal-organic frameworks, Nat. Commun. 10(2019) 5165. [80] Y. Cao, X. Li, J. Xiong, L. Wang, L. Yan, J. Ge, Investigating the origin of high efficiency in confined multienzyme catalysis, Nanoscale 11(2019) 22108-22117. [81] X. Wu, C. Yang, J. Ge, Green synthesis of enzyme/metal-organic framework composites with high stability in protein denaturing solvents, Bioresources and Bioprocessing 4(2017) 24. [82] C. Zhang, X. Wang, M. Hou, X. Li, X. Wu, J. Ge, Immobilization on Metal-Organic Framework Engenders High Sensitivity for Enzymatic Electrochemical Detection, ACS Appl. Mater. Interfaces 9(2017) 13831-13836. [83] P. Chulkaivalsucharit, X. Wu, J. Ge, Synthesis of enzyme-embedded metalorganic framework nanocrystals in reverse micelles, RSC Adv. 5(2015) 101293-101296. [84] G.Z. Wang, X.Y. Dong, Y. Sun, Ion-exchange resins greatly facilitate refolding of like-charged proteins at high concentrations, Biotechnol. Bioeng. 108(2011) 1068-1077. [85] L. Yu, X. Dong, Y. Sun, Ion-exchange resins facilitate like-charged protein refolding:Effects of porous solid phase properties, J. Chromatogr. A 1225(2012) 168-173. [86] C. Yang, X. Dong, Y. Sun, Mechanistic studies of protein refolding facilitated by likecharged polymers, React. Funct. Polym. 73(2013) 1405-1411. [87] H. Liu, W. Du, X. Dong, Y. Sun, Integrative refolding and purification of histidinetagged protein by like-charge facilitated refolding and metal-chelate affinity adsorption, J. Chromatogr. A 1344(2014) 59-65. [88] S. Bai, H. Li, L. Zhang, Standing Orientation of Lysozymes Induced by Electrostatically Repulsive Surface, Acta Phys. -Chim. Sin. 29(2013) 849-857. [89] L. Zhang, Y. Sun, Charged surface regulates the molecular interactions of electrostatically repulsive peptides by inducing oriented alignment, Langmuir 34(2018) 4390-4397. [90] A.D. White, A.K. Nowinski, W. Huang, A.J. Keefe, F. Sun, S. Jiang, Decoding nonspecific interactions from nature, Chem. Sci. 3(2012) 3488. [91] S. Chen, Z. Cao, S. Jiang, Ultra-low fouling peptide surfaces derived from natural amino acids, Biomaterials 30(2009) 5892-5896. [92] Q. Shao, S. Jiang, Molecular understanding and design of zwitterionic materials, Adv. Mater. 27(2015) 15-26. [93] X. Lin, P. Jain, K. Wu, D. Hong, H. Hung, M.B.O. Kelly, B.W. Li, P. Zhang, Z.F. Yuan, S.Y. Jiang, Ultralow fouling and functionalizable surface chemistry based on zwitterionic carboxybetaine random copolymers, Langmuir 35(2018) 1544-1551. [94] Y. Chang, S. Chen, Q. Yu, Z. Zhang, M. Bernards, S. Jiang, Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance, Biomacromolecules. 8(2007) 122-127. [95] S. Chen, J. Zheng, L. Li, S. Jiang, Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption:Insights into nonfouling properties of zwitterionic materials, J. Am. Chem. Soc. 127(2005) 14473-14478. [96] M. Vergara-Barberán, E.J. Carrasco-Correa, M.J. Lerma-García, E.F. Simó-Alfonso, J. M. Herrero-Martínez, Current trends in affinity-based monoliths in microextraction approaches:A review, Anal. Chim. Acta 1084(2019) 1-20. [97] Y. Fang, D. Lin, S. Yao, Review on biomimetic affinity chromatography with short peptide ligands and its application to protein purification, J. Chromatogr. A 1571(2018) 1-15. [98] W. Zhao, F. Liu, Q. Shi, X. Dong, Y. Sun, Biomimetic design of affinity peptide ligands for human IgG based on protein A-IgG complex, Biochem. Eng. J. 88(2014) 1-11. [99] W. Zhao, Q. Shi, Y. Sun, FYWHCLDE-based affinity chromatography of IgG:Effect of ligand density and purifications of human IgG and monoclonal antibody, J. Chromatogr. A 1355(2014) 107-114. [100] A. Xue, W. Zhao, X.M. Liu, Y. Sun, Affinity chromatography of human IgG with octapeptide ligands identified from eleven peptide-ligand candidates, Biochem. Eng. J. 107(2016) 18-25. [101] C.J. Gerry, S.L. Schreiber, Chemical probes and drug leads from advances in synthetic planning and methodology, Nat. Rev. Drug Discov. 17(2018) 333-352. [102] D.C. Blakemore, L. Castro, I. Churcher, D.C. Rees, A.W. Thomas, D.M. Wilson, A. Wood, Organic synthesis provides opportunities to transform drug discovery, Nat. Chem. 10(2018) 383-394. [103] K.R. Campos, P.J. Coleman, J.C. Alvarez, S.D. Dreher, R.M. Garbaccio, N.K. Terrett, R.D. Tillyer, M.D. Truppo, E.R. Parmee, The importance of synthetic chemistry in the pharmaceutical industry, Science 363(2019), eaat0805.. [104] E. Lionta, G. Spyrou, D.K. Vassilatis, Z. Cournia, Structure-based virtual screening for drug discovery:principles, applications and recent advances, Curr. Top. Med. Chem. 14(2014) 1923. [105] R.A. Copeland, M.R. Harpel, P.J. Tummino, Targeting enzyme inhibitors in drug discovery, Expert Opin. Ther. Targets 11(2007) 967-978. [106] K. Patel, Z.S. Ahmed, X. Huang, Q. Yang, E. Ekinci, C.M. Neslund-Dudas, B. Mitra, F. Elnady, Y.H. Ahn, H.J. Yang, J.B. Liu, Q.P. Dou, Discovering proteasomal deubiquitinating enzyme inhibitors for cancer therapy:lessons from rational design, nature and old drug reposition, Future Med. Chem. 10(2018) 2087-2108. [107] S. Gross, R. Rahal, N. Stransky, C. Lengauer, K.P. Hoeflich, Targeting cancer with kinase inhibitors, J. Clin. Invest. 125(2015) 1780-1789. [108] C.T. Supuran, Advances in structure-based drug discovery of carbonic anhydrase inhibitors, Expert Opin. Drug Discovery 12(2017) 61-88. [109] E.A. Fradinger, B.H. Monien, B. Urbanc, A. Lomakin, M. Tan, H. Li, S.M. Spring, M.M. Condron, L. Cruz, C.W. Xie, G.B. Benedek, G. Bitan, C-terminal peptides coassemble into A 42 oligomers and protect neurons against A 42-induced neurotoxicity, Proc. Natl. Acad. Sci. 105(2008) 14175-14180. [110] F. Liu, W. Du, Y. Sun, J. Zheng, X. Dong, Atomistic characterization of binding modes and affinity of peptide inhibitors to amyloid-β protein, Front. Chem. Sci. Eng. 8(2014) 433-444. [111] N. Xiong, X. Dong, J. Zheng, F. Liu, Y. Sun, Design of LVFFARK and LVFFARK-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity, ACS Appl. Mater.Inter. 7(2015) 5650-5662. [112] N. Xiong, Y. Zhao, X. Dong, J. Zheng, Y. Sun, Design of a molecular hybrid of dual peptide inhibitors coupled on AuNPs for enhanced inhibition of amyloid β-protein aggregation and cytotoxicity, Small 13(2017) 1601666. [113] L. Zhang, Y. Sun, Biomimetic design of platelet adhesion inhibitors to block integrin α2β1-collagen interactions:I. construction of an affinity binding model, Langmuir 30(2014) 4725-4733. [114] L. Zhang, C. Zhang, Y. Sun, Biomimetic design of platelet adhesion inhibitors to block integrin α2β1-collagen interactions:Ⅱ. inhibitor library, screening, and experimental validation, Langmuir 30(2014) 4734-4742. [115] L. Zhang, T. Hao, Development of Thrombus Inhibitor LERNSTY Targeted at Collagen, J. Tianjin University (Science and Technology) 51(2018) 401-405. [116] Q. Hou, L. Zhang, Biomimetic design of peptide neutralizer of ebola virus with molecular simulation, Langmuir 36(2020) 1813-1821. [117] G. Yuan, H. Li, B. Fan, Survey on Development of Knowledge Engineering System, Comput. Technol. Autom. 30(2011) 138-143. [118] M.M. Lopez, J. Kalita, Deep Learning applied to NLP, ArXiv (2017)https://arxiv.org/abs/1703.03091. [119] C. Tao, L. Mou, D. Zhao, R. Yan, RUBER:An Unsupervised Method for Automatic Evaluation of Open-Domain Dialog Systems, 2017. [120] H. Li, Overview of the development of artificial intelligence, Sci. Technol. Gansu 36(2007) 17-18. [121] W. Yin, H. Schütze, Task-Specific Attentive Pooling of Phrase Alignments Contributes to Sentence Matching, 1, 2017699-709. [122] Artificial Intelligence Standardization White Paper:China Electronics Standardization Institute. [123] G. Hinton, L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, et al., Deep neural networks for acoustic modeling in speech recognition:The shared views of four research groups, IEEE Signal Proc. Mag. 29(2012) 82-97. [124] A. Kaplan, M. Haenlein, Siri, Siri, in my hand:Who's the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence, Bus. Horizons. 62(2019) 15-25. [125] H.C.S. Chan, H. Shan, T. Dahoun, H. Vogel, S. Yuan, Advancing drug discovery via artificial intelligence, Trends Pharmacol. Sci. 40(2019) 592-604. [126] S. Harrer, P. Shah, B. Antony, J. Hu, Artificial intelligence for clinical trial design, Trends Pharmacol. Sci. 40(2019) 577-591. [127] Y. Cui, C. Shang, S. Chen, J. Hao, Overview of AI:Developments of AI Techniques, Radio Commun. Technol. 45(2019) 225-231. [128] E. Reiter, R. Dale, Building applied natural language generation systems, Comput. Linguist. 27(2000) 298-300. [129] R. Socher, C.C. Lin, A.Y. Ng, C.D. Manning, Parsing Natural Scenes and Natural Language with Recursive Neural Networks, the 28th International Conference on Machine Learning, Bellevue, WA, USA, 2011. [130] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani, V. Zhang, R. Paulus, R. Socher, Ask me anything:dynamic memory networks for natural language processing, 2015. [131] L.P. Kaelbling, M.L. Littman, A.P. Moore, Reinforcement learning asurvey, J. Artif. Intell. Res. 4(1996) 237-285. [132] B. Hidasi, M. Quadrana, A. Karatzoglou, D. Tikk, Parallel recurrent neural network architectures for feature-rich session-based recommendations, ACM, 2016. [133] B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk, Session-based Recommendations with Recurrent Neural Networks, ACM, 2016. [134] M. Quadrana, A. Karatzoglou, B. Hidasi, P. Cremonesi, Personalizing session-based recommendations with hierarchical recurrent neural networks, ACM, 2017. [135] Y.K. Tan, X. Xu, Y. Liu, Improved Recurrent Neural Networks for Session-based Recommendations, Proceedings of the 1st Workshop on Deep Learning for Recommender Systems 2016, pp. 17-22, Boston, MA, USA. [136] R. Szeliski, Computer Vision-Algorithms and Applications, Springer, Berlin, 2010. [137] M.M. Trivedi, T. Gandhi, J. McCall, Looking-In and Looking-Out of a Vehicle:Computer-Vision-Based Enhanced Vehicle Safety, IEEE T Intell. Transp. 8(2007) 108-120. [138] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates, A.Y. Ng, DeepSpeech:Scaling up end-to-end speech recognition, Comput. Sci. (2014) 1-12. [139] R. Li, H.J. Wijma, L. Song, Y. Cui, M. Otzen, Y.E. Tian, J.W. Du, T. Li, D.D. Niu, Y.C. Chen, J. Feng, J. Han, H. Chen, Y. Tao, D.B. Janssen, B. Wu, Computational redesign of enzymes for regio- and enantioselective hydroamination, Nat. Chem. Biol. 14(2018) 664-670. [140] J.M. Cunningham, G. Koytiger, P.K. Sorger, M. AlQuraishi, Biophysical prediction of protein-peptide interactions and signaling networks using machine learning, Nat. Methods (2020). [141] N.S. Madhukar, P.K. Khade, L. Huang, K. Gayvert, G. Galletti, M. Stogniew, J.E. Allen, P. Giannakakou, O. Elemento, machine learning approach for drug target identification using diverse data types, Nat. Commun. 10(2019). [142] A. Ianevski, A.K. Giri, P. Gautam, A. Kononov, S. Potdar, J. Saarela, K. Wennerberg, T. Aittokallio, Prediction of drug combination effects with a minimal set of experiments, Nature Mach. Intell. 1(2019) 568-577. [143] P. Gainza, F. Sverrisson, F. Monti, E. Rodolà, D. Boscaini, M.M. Bronstein, B.E. Correia, Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning, Nat. Methods 17(2019) 184-192. |
[1] | Xiaobo Ruan, Sheng Zhang, Wei Song, Jia Liu, Xiulai Chen, Liming Liu, Jing Wu. Efficient synthesis of tyrosol from L-tyrosine via heterologous Ehrlich pathway in Escherichia coli [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 18-30. |
[2] | Chunyu Zhang, Yan Sun, Xiaoyan Dong. Conjugation of a zwitterionic polymer with dimethyl chains to lipase significantly increases the enzyme activity and stability [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 48-53. |
[3] | Shuo Li, Jianlin Cao, Xiang Feng, Yupeng Du, De Chen, Chaohe Yang, Wenhua Wang, Wanzhong Ren. Insights into the confinement effect on isobutane alkylation with C4 olefin catalyzed by zeolite catalyst: A combined theoretical and experimental study [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 174-184. |
[4] | Fu Yang, Ruyi Wang, Shijian Zhou, Xuyu Wang, Yan Kong, Shuying Gao. Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 182-193. |
[5] | Guangchun Song, Yuanxing Ning, Yuxing Li, Wuchang Wang. Investigation on hydrate growth at the oil–water interface: In the presence of asphaltene [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 211-218. |
[6] | Yaling Li, Hao Ai, Liangzhi Qiao, Yinghong Wang, Kaifeng Du. Fabrication and characterization of hierarchical porous Ni2+ doped hydroxyapatite microspheres and their enhanced protein adsorption capacity [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 238-247. |
[7] | Jun Pan, Xianli Xu, Zhaohui Wang, Shi-Peng Sun, Zhaoliang Cui, Lassaad Gzara, Iqbal Ahmed, Omar Bamaga, Mohammed Albeirutty, Enrico Drioli. Innovative hydrophobic/hydrophilic perfluoropolyether (PFPE)/polyvinylidene fluoride (PVDF) composite membrane for vacuum membrane distillation [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 248-257. |
[8] | Yue Liang, Wenjuan Wang, Yan Sun, Xiaoyan Dong. Insights into the cross-amyloid aggregation of Aβ40 and its N-terminal truncated peptide Aβ11-40 affected by epigallocatechin gallate [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 284-293. |
[9] | Peiwei Han, Chunhua Xu, Yamin Wang, Chenglin Sun, Huangzhao Wei, Haibo Jin, Ying Zhao, Lei Ma. The high catalytic activity and strong stability of 3%Fe/AC catalysts for catalytic wet peroxide oxidation of m-cresol: The role of surface functional groups and FeOx particles [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 105-114. |
[10] | Kamel Hendaoui, Malika Trabelsi-Ayadi, Fadhila Ayari. Optimization of continuous electrocoagulation-adsorption combined process for the treatment of a textile effluent [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 310-320. |
[11] | Shaoxiang Cai, Han Yan, Qiuyi Wang, He Han, Ru Li, Zhichao Lou. Top-down strategy for bamboo lignocellulose-derived carbon heterostructure with enhanced electromagnetic wave dissipation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 360-369. |
[12] | Zenan Wang, Xin Zheng, Yan Wang, Heng Lin, Hui Zhang. Evaluation of phenanthrene removal from soil washing effluent by activated carbon adsorption using response surface methodology [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 399-405. |
[13] | Ziheng Cui, Shiding Zhang, Shengyu Zhang, Biqiang Chen, Yushan Zhu, Tianwei Tan. Green biomanufacturing promoted by automatic retrobiosynthesis planning and computational enzyme design [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 6-21. |
[14] | Xue-hui Ge, Liangji Mo, Anhe Yu, Chenzi Tian, Xiaoda Wang, Chen Yang, Ting Qiu. Stimuli-responsive emulsions: Recent advances and potential applications [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 193-209. |
[15] | Chen Zhao, Yahan Ye, Xianfu Chen, Xiaowei Da, Minghui Qiu, Yiqun Fan. Charged modified tight ceramic ultrafiltration membranes for treatment of cationic dye wastewater [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 267-277. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||