[1] F. He, X. Deng, J. Ding, Simultaneous absorption of NO and SO2 by combined urea and FeⅡEDTA reaction systems, RSC Adv. 8(2018) 32138-32145. [2] L. Yang, X. Zhang, Q. Kan, B. Zhao, X. Ma, Effect of gas composition on nitric oxide removal from simulated flue gas with DBD-NPC method, Chin. J. Chem. Eng. 27(2019) 3017-3026. [3] Y. Li, Q. Xu, R. Guo, Z. Wang, X. Liu, X. Shi, Z. Qiu, H. Qin, P. Jia, Y. Qin, Removal of NO by using sodium persulfate/limestone slurry:modeling by response surface methodology, Fuel 254(2019) 115612. [4] X. Kang, X. Ma, J.A. Yin, X. Gao, A study on simultaneous removal of NO and SO2 by using sodium persulfate aqueous scrubbing, Chin. J Chem. Eng. 26(2018) 1536-1544. [5] Y. Liu, J. Zhang, C. Sheng, Y. Zhang, L. Zhao, Simultaneous removal of NO and SO2 from coal-fired flue gas by UV/H2O2 advanced oxidation process, Chem. Eng. J. 162(2010) 1006-1011. [6] M. Chen, B. Xie, F. He, X. Deng, Efficient inhibition of S(IV) oxidation in a novel basic aluminum sulfate regenerative flue gas desulfurization process by ethylene glycol:kinetics and reaction mechanism, Energy Fuel 33(2019) 1383-1391. [7] K. Huang, X. Deng, F. He, SO2 enhanced desorption from basic aluminum sulfate desulphurization-regeneration solution by falling-film evaporation, RSC Adv. 8(2018) 5550-5558. [8] Z. Zhou, X. Liu, Y. Hu, J. Xu, X.E. Cao, Z. Liao, M. Xu, Investigation on synergistic oxidation behavior of NO and Hg0 during the newly designed fast SCR process, Fuel 225(2018) 134-139. [9] Y. Wang, H. Li, S. Wang, X. Wang, Z. He, J. Hu, Investigation of sulphated CuCl2/TiO2 catalyst for simultaneous removal of Hg0 and NO in SCR process, Fuel Process. Technol. 188(2019) 179-189. [10] T. Schneppensieper, S. Finkler, A. Czap, R.V. Eldik, M. Heus, P. Nieuwenhuizen, C. Wreesmann, W. Abma, Tuning the reversible binding of NO to Iron(Ⅱ) aminocarboxylate and related complexes in aqueous solution, Eur. J. Inorg. Chem. 2001(2010) 491-501. [11] W.J. Cai, Z.P. Tang, J.W. Li, Removal of nitric oxide from simulated gas by the corona discharge combined with cobalt ethylenediamine solution, Fuel Process. Technol. 140(2015) 82-87. [12] C. Sun, Y. Zhang, Complexing absorption of NO by cobalt(Ⅱ)-histidine, Energy Fuel 32(2018) 688-695. [13] W. Jiang, Q. Xu, X. Wei, Use of cobalt(Ⅱ) chelates of monothiol-containing ligands for the removal of nitric oxide, J. Hazard. Mater. 374(2019) 50-57. [14] E. Sada, H. Kumazawa, Y. Takada, Chemical reactions accompanying absorption of nitric oxide into aqueous mixed solutions of iron(Ⅱ)-EDTA and sodium sulfite, Ind. Eng. Chem. Fundam. 23(1984) 60-64. [15] S.G. Chang, D. Littlejohn, S. Lynn, Effects of metal chelates on wet flue gas scrubbing chemistry, Environ. Sci. Technol. 17(1983) 649-653. [16] S. Wang, Z. Qi, Z. Gu, Z. Wang, Z. Ping, Effects of sintering flue gas properties on simultaneous removal of SO2 and NO by ammonia-Fe(Ⅱ)EDTA absorption, J. Energy Inst. 90(2016) 522-527. [17] T.T. Suchecki, B. Mathews, H. Kumazawa, Kinetic study of ambient-temperature reduction of FeⅢedta by Na2S2O4, Ind. Eng. Chem. Res. 44(2005) 4249-4253. [18] X. Yang, L. Yang, L. Dong, X. Long, W. Yuan, Kinetics of the[Fe(Ⅲ)-EDTA]-reduction by sulfite under the catalysis of activated carbon, Energy Fuel 25(2015) 4248-4255. [19] K. Xiang, H. Liu, B. Yang, C. Zhang, S. Yang, Z. Liu, C. Liu, X. Xie, L. Chai, X. Min, Selenium catalyzed Fe(Ⅲ)-EDTA reduction by Na2SO3:A reaction-controlled phase transfer catalysis, Environ. Sci. Pollut. R. 23(2016) 8113-8119. [20] H. Zhu, Z. Nie, Y. Hu, J. Wang, H. Bai, Y. Li, Q. Guo, C. Wang, Experimental study on denitration performance of iron complex-based absorption solutions and their regeneration by Zn, Energy Fuel 33(2019) 8998-9003. [21] Y. Duo, X. Wang, J. He, S. Zhang, H. Pan, J. Chen, J. Chen, Simultaneous removal of SO2 and NO by FeⅡ(EDTA) solution:promotion of Mn powder and mechanism of reduction, Environ. Sci. Pollut. R. 26(2019) 28808-28816. [22] Z. Zhou, G. Jing, X. Zheng, Reduction of Fe(Ⅲ)EDTA by Klebsiella sp. strain FD-3 in NOx scrubber solutions, Bioresource. Technol. 132(2013) 210-216. [23] W. Li, C.Z. Wu, S.H. Zhang, K. Shao, Y. Shi, Evaluation of microbial reduction of Fe(Ⅲ) EDTA in a chemical absorption-biological reduction integrated NOx removal system, Environ. Sci. Technol. 41(2007) 639-644. [24] F. He, Y. Qian, J. Xu, Performance, mechanism, and kinetics of Fe(Ⅲ)EDTA reduction by thiourea dioxide, Energy Fuel 33(2019) 3331-3338. [25] G.E.P. Box, K.B. Wilson, On the experimental attainment of optimum conditions, J. R. Stat. Soc. 13(1992) 1-45. [26] R. Davarnejad, S. Nasiri, Slaughterhouse wastewater treatment using an advanced oxidation process:optimization study, Environ. Pollut. 223(2017) 1-10. [27] G. Yuan, J. Xu, L. Xin, J. Zhu, L. Nie, Experiment research on mix design and early mechanical performance of alkali-activated slag using response surface methodology (RSM), Ceram. Int. 42(2016) 11666-11673. [28] M.R. Sabour, A. Amiri, Comparative study of ANN and RSM for simultaneous optimization of multiple targets in Fenton treatment of landfill leachate, Waste Manag. 65(2017) 54-62. [29] I. Dahlan, Z. Ahmad, M. Fadly, K.T. Lee, A.H. Kamaruddin, A.R. Mohamed, Parameters optimization of rice husk ash (RHA)/CaO/CeO2 sorbent for predicting SO2/NO sorption capacity using response surface and neural network models, J. Hazard. Mater. 178(2010) 249-257. [30] F. He, X. Deng, M. Chen, Evaluation of Fe (Ⅱ) EDTA-NO reduction by zinc powder in wet flue gas denitrification technology with Fe (Ⅱ) EDTA, Fuel 199(2017) 523-531. [31] Chinese Health Ministry, National Food Safety Standard, GB 5009.33, 2010. [32] J. Wei, Y. Luo, Y. Ping, C. Bo, H. Tan, Removal of NO from flue gas by wet scrubbing with NaClO2/(NH2)2CO solutions, J. Ind. Eng. Chem. 15(2009) 16-22. [33] B. Yan, J. Yang, M. Guo, G. Chen, Z. Li, S. Ma, Study on NO enhanced absorption using FeⅡEDTA in (NH4)2SO3 solution, J. Ind. Eng. Chem. 20(2014) 2528-2534. [34] P. Gans, Reaction of nitric oxide with cobalt(Ⅱ) ammine complexes and other reducing agents, J. Chem. Soc. A (1967) 943-946. [35] L. Wei, Z. Lei, L. Nan, S. Yun, Y. Xia, J. Zhao, M. Li, Evaluation of NO removal from flue gas by a chemical absorption-biological reduction integrated system:complexed NO conversion pathways and nitrogen equilibrium analysis, Energy Fuel 28(2014) 4725-4730. [36] L. Mohajeri, H.A. Aziz, M.H. Isa, M.A. Zahed, A statistical experiment design approach for optimizing biodegradation of weathered crude oil in coastal sediments, Bioresour. Technol. 101(2010) 893-900. [37] R. Davarnejad, S. Nasiri, Slaughterhouse wastewater treatment using an advanced oxidation process:optimization study, Environ. Pollut. 223(2017) 1-10. [38] R. Davarnejad, M. Mohammadi, A.F. Ismail, Petrochemical wastewater treatment by electro-Fenton process using aluminum and iron electrodes:Statistical comparison, J. Water Process Eng. 3(2014) 18-25. [39] Y. Wu, S. Zhou, F. Qin, X. Ye, K. Zheng, Modeling physical and oxidative removal properties of Fenton process for treatment of landfill leachate using response surface methodology (RSM), J. Hazard. Mater. 180(2010) 456-465. [40] F. He, X. Zhu, X. Chen, J. Ding, Evaluation of FeⅡEDTA-NO reduction by thiourea dioxide in NO removal with FeⅡEDTA, Asia Pac. J. Chem. Eng. 15(2020) e2397. [41] J. Zhang, Removal of NOx from flue gas with iron filings reduction following complex absorption in ferrous chelates aqueous solutions, J. Air Waste Manage. Assoc. 54(2004) 1543-1549. [42] H.S. Zhu, Y.P. Mao, X.J. Yang, C. Yu, X.L. Long, W.K. Yuan, Simultaneous absorption of NO and SO2 into FeⅡ-EDTA solution coupled with the FeⅡ-EDTA regeneration catalyzed by activated carbon, Sep. Purif. Technol. 74(2010) 1-6. [43] F. Meng, Experimental on Complexing Absorption of NO Using FeⅡEDTA Solution and Reduction with (NH4)2SO3 Solution, M.S. Thesis Hefei University of Technology, Hefei, 2017. |