[1] J.R. Werber, C.O. Osuji, M. Elimelech, Materials for next-generation desalination and water purification membranes, Nat. Rev. Mater. 1(2016) 16018. [2] J. Wu, F. Xu, S. Li, P. Ma, X. Zhang, Q. Liu, R. Fu, D. Wu, Porous polymers as multifunctional material platforms toward task-specific applications, Adv. Mater. 31(2019), e1802922.. [3] J.Y. Park, M.H. Acar, A. Akthakul, W. Kuhlman, A.M. Mayes, Polysulfone-graft-poly (ethylene glycol) graft copolymers for surface modification of polysulfone membranes, Biomaterials 27(2006) 856-865. [4] K. Zodrow, L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. Li, P.J.J. Alvarez, Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal, Water Res. 43(2009) 715-723. [5] V. Kochkodan, N. Hilal, A comprehensive review on surface modified polymer membranes for biofouling mitigation, Desalination 356(2015) 187-207. [6] Y.Q. Song, J. Sheng, M. Wei, X.B. Yuan, Surface modification of polysulfone membranes by low-temperature plasma-graft poly(ethylene glycol) onto polysulfone membranes, J. Appl. Polym. Sci. 78(2000) 979-985. [7] Y. Yang, H. Zhang, P. Wang, Q. Zheng, J. Li, The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane, J. Membr. Sci. 288(2007) 231-238. [8] Q.Z. Zheng, P. Wang, Y.-N. Yang, Rheological and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process, J. Membr. Sci. 279(2006) 230-237. [9] J.H. Kim, K.H. Lee, Effect of PEG additive on membrane formation by phase inversion, J. Membr. Sci 138(1998) 153-163. [10] S. Hou, X. Wang, X. Dong, J. Zheng, S. Li, Renewable antibacterial and antifouling polysulfone membranes incorporating a PEO-grafted amphiphilic polymer and Nchloramine functional groups, J. Colloid Interface Sci. 554(2019) 658-667. [11] S. Zhao, Z. Wang, X. Wei, B. Zhao, J. Wang, S. Yang, S. Wang, Performance improvement of polysulfone ultrafiltration membrane using well-dispersed polyaniline-poly(vinylpyrrolidone) nanocomposite as the additive, Ind. Eng. Chem. Res. 51(2012) 4661-4672. [12] M.J. Han, Effect of propionic acid in the casting solution on the characteristics of phase inversion polysulfone membranes, Desalination 121(1999) 31-39. [13] G.R. Guillen, T.P. Farrell, R.B. Kaner, E.M.V. Hoek, Pore-structure, hydrophilicity, and particle filtration characteristics of polyaniline-polysulfone ultrafiltration membranes, J. Mater. Chem. 20(2010) 4621-4628. [14] Z. Fan, Z. Wang, N. Sun, J. Wang, S. Wang, Performance improvement of polysulfone ultrafiltration membrane by blending with polyaniline nanofibers, J. Membr. Sci. 320(2008) 363-371. [15] J.H. Kim, K.H. Lee, Effect of PEG additive on membrane formation by phase inversion, J. Membr. Sci. 138(1998) 153-163. [16] I.C. Kim, K.H. Lee, Effect of poly(ethylene glycol) 200 on the formation of a polyetherimide asymmetric membrane and its performance in aqueous solvent mixture permeation, J. Membr. Sci. 230(2004) 183-188. [17] Y. Chen, M. Wei, Y. Wang, Upgrading polysulfone ultrafiltration membranes by blending with amphiphilic block copolymers:Beyond surface segregation, J. Membr. Sci. 505(2016) 53-60. [18] C. Shen, Q. Meng, G. Zhang, Chemical modification of polysulfone membrane by polyethylene glycol for resisting drug adsorption and self-assembly of hepatocytes, J. Membr. Sci. 369(2011) 474-481. [19] W. Chen, M. Wei, Y. Wang, Advanced ultrafiltration membranes by leveraging microphase separation in macrophase separation of amphiphilic polysulfone block copolymers, J. Membr. Sci. 525(2017) 342-348. [20] D. Zhong, Z. Wang, Q. Lan, Y. Wang, Selective swelling of block copolymer ultrafiltration membranes for enhanced water permeability and fouling resistance, J. Membr. Sci. 558(2018) 106-112. [21] Z. Wang, R. Liu, H. Yang, Y. Wang, Nanoporous polysulfones with in situ PEGylated surfaces by a simple swelling strategy using paired solvents, Chem. Commun. 53(2017) 9105-9108. [22] H. Yang, J. Zhou, Z. Wang, X. Shi, Y. Wang, Selective swelling of polysulfone/poly (ethylene glycol) block copolymer towards fouling-resistant ultrafiltration membranes, Chin. J. Chem. Eng. 28(2020) 98-103. [23] T. Bucher, V. Filiz, C. Abetz, V. Abetz, Formation of Thin, isoporous block copolymer membranes by an upscalable profile roller coating process-A promising way to save block copolymer, Membranes 8(2018) 57-73. [24] S.Y. Yang, I. Ryu, H.Y. Kim, J.K. Kim, S.K. Jang, T.P. Russell, Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses, Adv. Mater. 18(2006) 709-712. [25] D. Ma, J. Zhou, Z. Wang, Y. Wang, Block copolymer ultrafiltration membranes by spray coating coupled with selective swelling, J. Membr. Sci. 598(2020) 117656. [26] A.T. Barrows, A.J. Pearson, C.K. Kwak, A.D.F. Dunbar, A.R. Buckley, D.G. Lidzey, Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition, Energy Environ. Sci. 7(2014) 2944-2950. [27] F. Aziz, A.F. Ismail, Spray coating methods for polymer solar cells fabrication:A review, Mater. Sci. Semicond. Process. 39(2015) 416-425. [28] A. Reale, L.L. Notte, L. Salamandra, G. Polino, G. Susanna, T.M. Brown, F. Brunetti, A.D. Carlo, Spray coating for polymer solar cells:an up-to-date overview, Energy Technol. 3(2015) 385-406. [29] D. Vak, S. Kim, J. Jo, S. Oh, S. Na, J. Kim, D. Kim, Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation, Appl. Phys. Lett. 91(2007), 081102.. [30] Z. Tan, S. Chen, X. Peng, L. Zhang, C. Gao, Polyamide membranes withnanoscale turing structures forwater purification, Science 360(2018) 518-521. [31] Z. Wang, Z. Wang, S. Lin, H. Jin, S. Gao, Y. Zhu, J. Jin, Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination, Nat. Commun. 9(2018) 2004. [32] N. Wang, T. Wang, Y. Hu, Tailoring membrane surface properties and ultrafiltration performances via the self-assembly of polyethylene glycol-block-polysulfone-blockpolyethylene glycol block copolymer upon thermal and solvent annealing, ACS Appl. Mater. Interfaces 9(2017) 31018-31030. [33] L. Saitoh, R.R. Babu, S. Kannappan, K. Kojima, T. Mizutani, S. Ochiai, Performance of spray deposited poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2- thienyl-2',1',3'-benzothiadiazole)]/[6,6]-phenyl-C61-butyric acid methyl ester blend active layer based bulk heterojunction organic solar cell devices, Thin Solid Films 520(2012) 3111-3117. [34] X. Yao, Z. Wang, Z. Yang, Y. Wang, Energy-saving, responsive membranes with sharp selectivity assembled from micellar nanofibers of amphiphilic block copolymers, J. Mater. Chem. A 1(2013) 7100. [35] X. Yao, J. Li, Z. Wang, L. Kong, Y. Wang, Highly permeable and robust membranes assembled from block-copolymer-functionalized carbon nanotubes, J. Membr. Sci. 493(2015) 224-231. [36] Z. Wang, X. Yao, Y. Wang, Swelling-induced mesoporous block copolymer membranes with intrinsically active surfaces for size-selective separation, J. Mater. Chem. 22(2012) 20542. [37] J. Yin, X. Yao, J.Y. Liou, W. Sun, Y.S. Sun, Y. Wang, Membranes with highly ordered straight nanopores by selective swelling of fast perpendicularly aligned block copolymers, ACS Nano 7(2013) 9961-9974. [38] N. Yan, Y. Wang, Selective swelling induced pore generation of amphiphilic block copolymers:The role of swelling agents, J. Polym. Sci. B Polym. Phys. 54(2016) 926-933. [39] Y. Wang, Nondestructive creation of ordered nanopores by selective swelling of block copolymers:Toward homoporous membranes, Acc. Chem. Res. 49(2016) 1401-1408. |