[1] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature 488(2012) 294-303. [2] P.C. Munasinghe, S.K. Khanal, Biomass-derived syngas fermentation into biofuels:Opportunities and challenges, Bioresour. Technol. 101(2010) 5013-5022. [3] D.W. Griffin, M.A. Schultz, Fuel and chemical products from biomass syngas:A comparison of gas fermentation to thermochemical conversion routes, Environ. Prog. Sustain. Energy 31(2012) 219-224. [4] J. Daniell, M. Köpke, S.D. Simpson, Commercial biomass syngas fermentation, Energies 5(2012) 5372-5417. [5] D. Kennes, H.N. Abubackar, M. Diaz, M.C. Veiga, C. Kennes, Bioethanol production from biomass:Carbohydrate vs syngas fermentation, J. Chem. Technol. Biotechnol. 91(2016) 304-317. [6] LanzaTech, World's first commercial waste gas to ethanol plant starts up, http://www.lanzatech.com/worlds-first-commercial-waste-gas-ethanol-plant-starts/2018. [7] M.D. Bredwell, P. Srivastava, R.M. Worden, Reactor design issues for synthesis-gas fermentations, Biotechnol. Prog. 15(1999) 834-844. [8] J.L. Vega, E.C. Clausen, J.L. Gaddy, Design of bioreactors for coal synthesis gas fermentation, Resour. Conserv. Recycl. 3(1990) 149-160. [9] K.T. Klasson, M.D. Ackerson, E.C. Clausen, J.L. Gaddy, Bioreactor design for synthesis gas fermentations, Fuel 70(1991) 605-614. [10] M. Bouaifi, G. Hebrard, D. Bastoul, M. Roustan, A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in gas-liquid reactors and bubble columns, Chem. Eng. Process. 40(2001) 97-111. [11] H.N. Abubackar, M.C. Veiga, C. Kennes, Biological conversion of carbon monoxide:rich syngas or waste gases to bioethanol, Biofuels Bioprod. Biorefin. 5(2011) 93-114. [12] J.J. Orgill, H.K. Atiyeh, M. Devarapalli, J.R. Phillips, R.S. Lewis, R.L. Huhnke, A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors, Bioresour. Technol. 133(2013) 340-346. [13] K. Asimakopoulos, H.N. Gavala, I.V. Skiadas, Reactor systems for syngas fermentation processes:a review, Chem. Eng. J. 348(2018) 732-744. [14] P. Hu, H. Rismani-Yazdi, G. Stephanopoulos, Anaerobic CO2 fixation by acetogenic bacterium Moorella thermoacetica, AIChE J. 59(2013) 3176-3183. [15] Y. Kourkoutas, A. Bekatorou, I.M. Banat, R. Marchant, A.A. Koutinas, Immobilization technologies and support materials suitable in alcohol beverages production:a review, Food Microbiol. 21(2004) 377-397. [16] J.O. Westman, P. Ylitervo, C.J. Franzén, M.J. Taherzadeh, Effects of encapsulation of microorganisms on product formation during microbial fermentations, Appl. Microbiol. Biotechnol. 96(2012) 1441-1454. [17] I. Dolejš, M. Rebroš, M. Rosenberg, Immobilization of Clostridium spp. for production of solvents and organic acids, Chem. Pap. 68(2014) 1-14. [18] S. Khanna, A. Goyal, V.S. Moholkar, Effect of fermentation parameters on bioalcohols production from glycerol using immobilized Clostridium pasteurianum:an optimization study, Prep. Biochem. Biotechnol. 43(2013) 828-847. [19] F. Steger, L. Rachbauer, M. Windhagauer, L.F. Montgomery, G. Bochmann, Optimization of continuous gas fermentation by immobilization of acetate-producing Acetobacterium woodii, Anaerobe 46(2017) 96-103. [20] H.H. Cheng, J.C. Syu, S.Y. Tien, L.M. Whang, Biological acetate production from carbon dioxide by Acetobacterium woodii and Clostridium ljungdahlii:the effect of cell immobilization, Bioresour. Technol. 262(2018) 229-234. [21] P. Hu, S. Chakraborty, A. Kumar, B. Woolston, H. Liu, D. Emerson, G. Stephanopoulos, Integrated bioprocess for conversion of gaseous substrates to liquids, Proc. Natl. Acad. Sci. U. S. A. 113(2016) 3773-3778. |