Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (3): 42-55.DOI: 10.1016/j.cjche.2020.09.047
Previous Articles Next Articles
Guohui Zhou, Kun Jiang, Zhenlei Wang, Xiaomin Liu
Received:
2020-08-23
Revised:
2020-09-17
Online:
2021-05-13
Published:
2021-03-28
Contact:
Xiaomin Liu
Supported by:
Guohui Zhou, Kun Jiang, Zhenlei Wang, Xiaomin Liu
通讯作者:
Xiaomin Liu
基金资助:
Guohui Zhou, Kun Jiang, Zhenlei Wang, Xiaomin Liu. Insight into the behavior at the hygroscopicity and interface of the hydrophobic imidazolium-based ionic liquids[J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 42-55.
Guohui Zhou, Kun Jiang, Zhenlei Wang, Xiaomin Liu. Insight into the behavior at the hygroscopicity and interface of the hydrophobic imidazolium-based ionic liquids[J]. 中国化学工程学报, 2021, 29(3): 42-55.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2020.09.047
[1] J.P. Hallett, T. Welton, Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2, Chem. Rev. 111 (5) (2011) 3508-3576. [2] K.R. Seddon, A taste of the future, Nat. Mater 2 (6) (2003) 363-365. [3] E. Markevich, V. Baranchugov, D. Aurbach, On the possibility of using ionic liquids as electrolyte solutions for rechargeable 5V Li ion batteries, Electrochem. Commun. 8 (8) (2006) 1331-1334. [4] A. Lewandowski, A. Świderska-Mocek, Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies, J. Power Sources 194 (2) (2009) 601-609. [5] M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B.-J. Hwang, H. Dai, An ultrafast rechargeable aluminium-ion battery, Nature 520 (7547) (2015) 324-328. [6] Y. Zhou, S. Gong, X. Xu, Z. Yu, J. Kiefer, Z. Wang, The interactions between polar solvents (methanol, acetonitrile, dimethylsulfoxide) and the ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide, J. Mol. Liq. 299 (2020) 112159. [7] H. Abe, A. Takeshita, H. Sudo, K. Akiyama, CO2 capture and surface structures of ionic liquid-propanol solutions, J. Mol. Liq. 301 (2020) 112445. [8] C. Herrera, G. García, R. Alcalde, M. Atilhan, S. Aparicio, Interfacial properties of 1-ethyl-3-methylimidazolium glycinate ionic liquid regarding CO2, SO2 and water from molecular dynamics, J. Mol. Liq. 220 (2016) 910-917. [9] M.G. Freire, L.M.N.B.F. Santos, A.M. Fernandes, J.A.P. Coutinho, I.M. Marrucho, An overview of the mutual solubilities of water-imidazolium-based ionic liquids systems, Fluid Phase Equilib. 261 (1-2) (2007) 449-454. [10] A.E. Visser, M.P. Jensen, I. Laszak, K.L. Nash, G.R. Choppin, R.D. Rogers, Uranyl coordination environment in hydrophobic ionic liquids: An in situ investigation, Inorg. Chem. 42 (7) (2003) 2197-2199. [11] M.G. Freire, C.M.S.S. Neves, P.J. Carvalho, R.L. Gardas, A.M. Fernandes, I.M. Marrucho, L.M.N.B.F. Santos, J.A.P. Coutinho, Mutual solubilities of water and hydrophobic ionic liquids, J. Phys. Chem. B 111 (45) (2007) 13082-13089. [12] P. Tshibangu, S. Ndwandwe, E. Dikio, Density, viscosity and conductivity study of 1-butyl-3-methylimidazolium bromide, Int. J. Electrochem. Sci. 6 (6) (2011) 2201-2213. [13] J. Widegren, E. Saurer, K. Marsh, J. Magee, Electrolytic conductivity of four imidazolium-based room-temperature ionic liquids and the effect of a water impurity, J. Chem. Thermodyn. 37 (2005) 569-575. [14] B. McAuley, K. Seddon, A. Stark, M. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Abstr. Pap. -Am. Chem. Soc. 221st (2001), IEC-277. [15] L. Tomé, F. Varanda, M. Freire, I. Marrucho, Towards an understanding of the mutual solubilities of water and hydrophobic ionic liquids in the presence of salts: The anion effect, J. Phys. Chem. B 113 (2009) 2815-2825. [16] M.G. Freire, P.J. Carvalho, R.L. Gardas, I.M. Marrucho, L.M.N.B.F. Santos, J.A.P. Coutinho, Mutual solubilities of water and the [Cnmim][Tf2N] hydrophobic ionic liquids, J. Phys. Chem. B 112 (6) (2008) 1604-1610. [17] K. Jiang, X.M. Liu, H.Y. He, J.J. Wang, S.J. Zhang, Insight into the formation and permeability of ionic liquid unilamellar vesicles by molecular dynamics simulation, Soft Matter 16 (10) (2020) 2605-2610. [18] X.M. Liu, X.Q. Yao, Y.L. Wang, S.J. Zhang, Mesoscale structures and mechanisms in ionic liquids, Particuology 48 (2020) 55-64. [19] J.K. Konieczny, B. Szefczyk, Structure of alkylimidazolium-based ionic liquids at the interface with vacuum and water—a molecular dynamics study, J. Phys. Chem. B 119 (9) (2015) 3795-3807. [20] S.S. Sarangi, S.G. Raju, S. Balasubramanian, Molecular dynamics simulations of ionic liquid-vapour interfaces: effect of cation symmetry on structure at the interface, PCCP 13 (7) (2011) 2714-2722. [21] M.E. Perez-Blanco, E.J. Maginn, Molecular dynamics simulations of carbon dioxide and water at an ionic liquid interface, J. Phys. Chem. B 115 (35) (2011) 10488-10499. [22] N. Sieffert, G. Wipff, The [BMI][Tf2N] ionic liquid/water binary system: A molecular dynamics study of phase separation and of the liquid liquid interface, J. Phys. Chem. B 110 (26) (2006) 13076-13085. [23] T. Koishi, Molecular dynamics study of the effect of water on hydrophilic and hydrophobic ionic liquids, J. Phys. Chem. B 122 (51) (2018) 12342-12350. [24] G. Hantal, M. Sega, S. Kantorovich, C. Schröder, M. Jorge, Intrinsic structure of the interface of partially miscible fluids: an application to ionic liquids, J. Phys. Chem. C 119 (51) (2015) 28448-28461. [25] T.Y. Li, Z.C. Zhao, X.D. Zhang, X.C. Sun, Molecular dynamics studies on liquid/vapor interface properties and structures of 1-ethyl-3-methylimidazolium dimethylphosphate-water, J. Phys. Chem. B 121 (14) (2017) 3087-3098. [26] J.G. McDaniel, A. Verma, On the miscibility and immiscibility of ionic liquids and water, J. Phys. Chem. B 123 (25) (2019) 5343-5356. [27] R. Lynden-Bell, J. Kohanoff, M. Popolo, Simulation of interfaces between room temperature ionic liquids and other liquids, Faraday Discuss. 129 (2005) 57-67. [28] K.R. Ramya, P. Kumar, A. Kumar, A. Venkatnathan, Interplay of phase separation, tail aggregation, and micelle formation in the nanostructured organization of hydrated imidazolium ionic liquid, J. Phys. Chem. B 118 (29) (2014) 8839-8847. [29] G. Hantal, I. Voroshylova, M.N.D.S. Cordeiro, M. Jorge, A systematic molecular simulation study of ionic liquid surfaces using intrinsic analysis methods, PCCP 14 (15) (2012) 5200-5213. [30] M. Lísal, Z. Posel, P. Izák, Air-liquid interfaces of imidazolium-based [TF2N-] ionic liquids: insight from molecular dynamics simulations, PCCP 14 (15) (2012) 5164-5177. [31] R. Biswas, P. Ghosh, T. Banerjee, S. Ali, K.T. Shenoy, Extractive insights in the cesium ion partitioning with bis(2-propyloxy)-calix [4]crown-6 and dicyclohexano-18-crown-6 in ionic liquid-water biphasic systems, J. Mol. Liq. 241 (2017) 279-291. [32] Z. Pouramini, A. Mohebbi, M.H. Kowsari, The possibility of cadmium extraction to the ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate in the presence of hydrochloric acid: a molecular dynamics study of the water-IL interface, Theor. Chem. Acc. 138 (8) (2019) 99. [33] T. Iwahashi, Y. Sakai, D. Kim, T. Ishiyama, A. Morita, Y. Ouchi, Nonlinear vibrational spectroscopic studies on water/ionic liquid([Cnmim]TFSA: n = 4, 8) interfaces, Faraday Discuss. 154 (2012) 289-301. [34] W.L. Jorgensen, D.S. Maxwell, J. TiradoRives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118 (45) (1996) 11225-11236. [35] J.N.C. Lopes, J. Deschamps, A.A.H. Padua, Modeling ionic liquids using a systematic all-atom force field, J. Phys. Chem. B 108 (30) (2004) 11250. [36] Toukan and Rahman, Molecular-dynamics study of atomic motions in water, Phys. Rev. B: Condens. Matter 31 (5) (1985) 2643-2648. [37] J. Wang, C. Yuan, Y. Han, Y. Wang, X. Liu, S. Zhang, X. Yan, Trace water as prominent factor to induce peptide self-assembly: dynamic evolution and governing interactions in ionic liquids, Small 13 (44) (2017) 1702175. [38] J. Zhou, X. Liu, S. Zhang, X. Zhang, G. Yu, Effect of small amount of water on the dynamics properties and microstructures of ionic liquids, AIChE J. 63 (6) (2017) 2248-2256. [39] J. Qian, X. Liu, R. Yan, C. Li, X. Zhang, S. Zhang, Effect of ion cluster on concentration of long-alkyl-chain ionic liquids aqueous solution by nanofiltration, Ind. Eng. Chem. Res. 57 (22) (2018) 7633-7642. [40] M.J. Abraham, T. Murtola, R. Schulz, S. Pall, J.C. Smith, B. Hess, E. Lindahl, GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX 1 (2015) 19-25. [41] L. Martinez, R. Andrade, E.G. Birgin, J.M. Martinez, PACKMOL: a package for building initial configurations for molecular dynamics simulations, J. Comput. Chem. 30 (13) (2009) 2157-2164. [42] S. Nose, A molecular dynamics method for simulations in the canonical ensemble (Reprinted from Molecular Physics, vol 52, pg 255, 1984), Mol. Phys. 100 (1) (2002) 191-198. [43] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys. 52 (1981) 7182-7190. [44] R.G. Seoane, E.J. Gonzalez, B. Gonzalez, 1-Alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide ionic liquids as solvents in the separation of azeotropic mixtures, J. Chem. Thermodyn. 53 (2012) 152-157. [45] J.E. Kim, J.S. Lim, J.W. Kang, Measurement and correlation of solubility of carbon dioxide in 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids, Fluid Phase Equilib. 306 (2) (2011) 251-255. [46] M. Hakala, K. Nygard, S. Manninen, S. Huotari, T. Buslaps, A. Nilsson, L.G.M. Pettersson, K. Hamalainen, Correlation of hydrogen bond lengths and angles in liquid water based on Compton scattering, J. Chem. Phys. 125 (8) (2006). [47] W. Zheng, P. Cao, Y. Yuan, C. Huang, Z. Wang, W. Sun, L. Zhao, Experimental and modeling study of isobutane alkylation with C4 olefin catalyzed by Bronsted acidic ionic liquid/sulfuric acid, Chem. Eng. J. 377 (2019) 119578. [48] Q. Huang, Y. Huang, Y. Luo, L. Li, G. Zhou, X. Chen, Z. Yang, Molecular-level insights into the structures, dynamics, and hydrogen bonds of ethylammonium nitrate protic ionic liquid at the liquid-vacuum interface, PCCP 22 (24) (2020) 13780-13789. [49] D. Yang, F. Fu, L. Li, Z. Yang, Z. Wan, Y. Luo, N. Hu, X. Chen, G. Zeng, Unique orientations and rotational dynamics of a 1-butyl-3-methyl-imidazolium hexafluorophosphate ionic liquid at the gas-liquid interface: the effects of the hydrogen bond and hydrophobic interactions, PCCP 20 (17) (2018) 12043-12052. |
[1] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[2] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[3] | Chen Chen, Qiong Tang, Hong Xu, Mingxing Tang, Xuekuan Li, Lei Liu, Jinxiang Dong. Alkyl-tetralin base oils synthesized from coal-based chemicals and evaluation of their lubricating properties [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 20-28. |
[4] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 355-363. |
[5] | Huan-Huan Yin, Yin-Lei Han, Xiao Yan, Yi-Xin Guan. Proanthocyanidins prevent tau protein aggregation and disintegrate tau filaments [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 63-71. |
[6] | Qiaoqiao Liu, Guihong Lin, Jian Zhou, Liangliang Huang, Chang Liu. Hydrogen-bond mediated and concentrate-dependent NaHCO3 crystal morphology in NaHCO3–Na2CO3 aqueous solution: Experiments and computer simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 49-58. |
[7] | Yingxiang Ni, Can Yuan, Shilong Li, Jian Lu, Lei Yan, Wei Gu, Weihong Xing, Wenheng Jing. Temperature-induced hydrophobicity transition of MXene membrane for directly preparing W/O emulsions [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 59-62. |
[8] | Jialei Sha, Chenyi Liu, Zhihong Ma, Weizhong Zheng, Weizhen Sun, Ling Zhao. Understanding the interfacial behaviors of benzene alkylation with butene using chloroaluminate ionic liquid catalyst: A molecular dynamics simulation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 44-52. |
[9] | Bo Pan, Biao Liu, Shaona Wang, Yeqing Lv, Hao Du, Yi Zhang. Understanding the hydroxyl adsorption behavior at Pt electrode surface in high-temperature alkaline solutions [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 173-179. |
[10] | Yi Shen, Xinshuang Chu, Qinghong Shi. Unraveling structure and performance of protein a ligands at liquid–solid interfaces: A multi-techniques analysis [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 232-239. |
[11] | Yifeng Chen, Hang Yu, Jingjing Chen, Xiaohua Lu, Xiaoyan Ji. Viscous behavior of 1-hexyl-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/polyethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 280-287. |
[12] | Baodong Zhao, Yinglei Wang, Fulei Gao, Yajing Liu, Weixiao Liu, Feng Ding. Understanding the alkyl effect of geminal dinitropropyl ester energetic plasticizers on hydroxyl terminated polybutadiene (HTPB): Simultaneous tuning on low temperature behavior and processability [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 364-371. |
[13] | Mi Feng, Bin He, Xinyan Chen, Junli Xu, Xingmei Lu, Cai Jia, Jian Sun. Separation of chitin from shrimp shells enabled by transition metal salt aqueous solution and ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 133-141. |
[14] | Peng Yang, Shengzhe Jia, Yan Wang, Zongqiu Li, Songgu Wu, Jingkang Wang, Junbo Gong. Dissolution behavior, thermodynamic and kinetic analysis of malonamide by experimental measurement and molecular simulation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 260-269. |
[15] | Xuan Gao, Zhihui Li, Dongsheng Zhang, Xinqiang Zhao, Yanji Wang. Synthesis and kinetics of 2,5-dicyanofuran in the presence of hydroxylamine ionic liquid salts [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 310-316. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||