[1] X. Gao, X. Li, J. Zhang, J. Sun, H. Li, Influence of a microwave irradiation field on vapor-liquid equilibrium, Chem. Eng. Sci. 90(2013) 213-220. [2] X. Gao, X. Liu, X. Li, J. Zhang, Y. Yang, H. Li, Continuous microwave-assisted reactive distillation column: Pilot-scale experiments and model validation, Chem. Eng. Sci. 186(2018) 251-264. [3] X. Gao, X. Liu, P. Yan, X. Li, H. Li, Numerical analysis and optimization of the microwave inductive heating performance of water film, Int. J. Heat Mass Transf. 139(2019) 17-30. [4] A. de la Hoz, A. Díaz-Ortiz, A. Moreno, Microwaves in organic synthesis. Thermal and non-thermal microwave effects, Chem. Soc. Rev. 34(2) (2005) 164-178. [5] P. Lidström, J. Tierney, B. Wathey, J. Westman, Microwave assisted organic synthesis —A review, Tetrahedron 57(45) (2001) 9225-9283. [6] H. Koshima, K. Miyazaki, S. Ishii, T. Asahi, Microwave effect on fischer esterification, Chem. Lett. 45(5) (2016) 505-507. [7] F. Chemat, E. Esveld, Microwave super-heated boiling of organic liquids: origin, effect and application, Chem. Eng. Technol. 24(7) (2001) 735-744. [8] X. Zhang, D.O. Hayward, D.M.P. Mingos, Dielectric properties of MoS2 and Pt catalysts: Effects of temperature and microwave frequency, Catal. Lett. 84(2002) 225-233. [9] X. Gao, D. Shu, X. Li, H. Li, Improved film evaporator for mechanistic understanding of microwave-induced separation process, Front. Chem. Sci. Eng. 13(4) (2019) 759-771. [10] H. Li, C. Zhang, C. Pang, X. Li, X. Gao, The advances in the special microwave effects of the heterogeneous catalytic reactions, Front. Chem. 8(2020) 355. [11] W. Chen, B. Gutmann, C.O. Kappe, Characterization of microwave-induced electric discharge phenomena in metal-solvent mixtures, Chemistryopen 1(1) (2012) 39-48. [12] Y. Tsukahara, A. Higashi, T. Yamauchi, T. Nakamura, M. Yasuda, A. Baba, Y. Wada, In situ observation of nonequilibrium local heating as an origin of special effect of microwave on chemistry, J. Phys. Chem. C 114(19) (2010) 8965-8970. [13] W. Wang, Z. Liu, J. Sun, Q. Ma, C. Ma, Y. Zhang, Experimental study on the heating effects of microwave discharge caused by metals, AIChE J. 58(12) (2012) 3852-3857. [14] Y. Zhou, W. Wang, J. Sun, X. Ma, Z. Song, X. Zhao, Y. Mao, Direct calorimetry study of metal discharge heating effects induced by microwave irradiation, Appl. Therm. Eng. 125(2017) 386-393. [15] Y. Feng, W. Wang, Y. Wang, J. Sun, C. Zhang, Q. Shahzad, Y. Mao, X. Zhao, Z. Song, Experimental study of destruction of acetone in exhaust gas using microwave-induced metal discharge, Sci. Total Environ. 645(2018) 788-795. [16] J. Sun, W. Wang, Q. Yue, C. Ma, J. Zhang, X. Zhao, Z. Song, Review on microwavemetal discharges and their applications in energy and industrial processes, Appl. Energy 175(2016) 141-157. [17] J.M. Lee, E.W.C. Lim, Heat transfer in a pulsating turbulent fluidized bed, Appl. Therm. Eng. 174(2020) 115321. [18] H.V. Ly, J.W. Park, S. Kim, H.T. Hwang, J. Kim, H.C. Woo, Catalytic pyrolysis of bamboo in a bubbling fluidized-bed reactor with two different catalysts: HZSM-5 and red mud for upgrading bio-oil, Renew. Energy 149(2020) 1434-1445. [19] S. Hamzehlouia, J. Shabanian, M. Latifi, J. Chaouki, Effect of microwave heating on the performance of catalytic oxidation of n-butane in a gas-solid fluidized bed reactor, Chem. Eng. Sci. 192(2018) 1177-1188. [20] H. Li, Z. Hao, J. Murphy, X. Li, X. Gao, Experimental study of liquid renewal on the sheet of structured corrugation SiC foam packing and its dispersion coefficients, Chem. Eng. Sci. 180(2018) 11-19. [21] Z. Chen, Y. Shi, D. Lai, S. Gao, Z. Shi, Y. Tian, G. Xu, Coal rapid pyrolysis in a transport bed under steam-containing syngas atmosphere relevant to the integrated fluidized bed gasification, Fuel 176(2016) 200-208. [22] Y. Bai, H. Si, Experimental study on fluidization, mixing and separation characteristics of binary mixtures of particles in a cold fluidized bed for biomass fast pyrolysis, Chemical Engineering and Processing-process Intensification 153(2020) 107936. [23] G.M. Batanov, N.K. Berezhetskaya, V.A. Kop Ev, I.A. Kossyi, A.N. Magunov, V.P. Silakov, Microwave cellular discharge in fine powder mixtures, Plasma Phys. Rep. 28(10) (2002) 871-876. [24] K.V. Kovtun, Y.V. Larin, A.I. Skibenko, E.I. Skibenko, A.N. Shapoval, V.B. Yuferov, Spectral characteristics of a dense gas-metal reflection discharge plasma, Tech. Phys. 55(5) (2010) 735-737. [25] W. Wang, L. Fu, J. Sun, S. Grimes, Y. Mao, X. Zhao, Z. Song, Experimental study of microwave-induced discharge and mechanism analysis based on spectrum acquisition, IEEE T Plasma Sci. 45(8) (2017) 2235-2242. [26] Y. Zhou, W. Wang, J. Sun, L. Fu, Z. Song, X. Zhao, Y. Mao, Microwave-induced electrical discharge of metal strips for the degradation of biomass tar, Energy 126(2017) 42-52. [27] F. Zhang, Z. Song, J. Zhu, L. Liu, J. Sun, X. Zhao, Y. Mao, W. Wang, Process of CH4-CO2 reforming over Fe/SiC catalyst under microwave irradiation, Sci. Total Environ. 639(2018) 1148-1155. [28] Y. Kim, H.S. Lim, M. Lee, J.W. Lee, Ni-Fe-Al mixed oxide for combined dry reforming and decomposition of methane with CO2 utilization, Catal. Today 368(2020) 86-95. [29] T. Zhang, Z. Liu, Y. Zhu, Z. Liu, Z. Sui, K. Zhu, X. Zhou, Dry reforming of methane on Ni-Fe-MgO catalysts: Influence of Fe on carbon-resistant property and kinetics, Appl. Catal. B Environ. 264(2020) 118497. [30] X. Meng, X. Cui, N.P. Rajan, L. Yu, D. Deng, X. Bao, Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis, Chem-US 5(9) (2019) 2296-2325. [31] Y. Chen, B. Deglee, Y. Tang, Z. Wang, B. Zhao, Y. Wei, L. Zhang, S. Yoo, K. Pei, J.H. Kim, Y. Ding, P. Hu, F.F. Tao, M. Liu, A robust fuel cell operated on nearly dry methane at 500 degrees C enabled by synergistic thermal catalysis and electrocatalysis, Nat. Energy 3(12) (2018) 1042-1050. [32] J.A. Andersen, J.M. Christensen, M. østberg, A. Bogaerts, A.D. Jensen, Plasma-catalytic dry reforming of methane: Screening of catalytic materials in a coaxial packed-bed DBD reactor, Chem. Eng. J. 397(2020) 125519. [33] H. Wang, J. Han, Z. Bo, L. Qin, Y. Wang, F. Yu, Non-thermal plasma enhanced dry reforming of CH4 with CO2 over activated carbon supported Ni catalysts, Mol. Catal. 475(2019) 110486. |