Chinese Journal of Chemical Engineering ›› 2021, Vol. 39 ›› Issue (11): 286-296.DOI: 10.1016/j.cjche.2021.03.002
Previous Articles Next Articles
Huan Zhang1,2, Peisong Yang2, Duli Yu2,3, Kunfeng Wang3, Qingyuan Yang1,2
Received:
2021-01-05
Revised:
2021-02-10
Online:
2021-12-27
Published:
2021-11-28
Contact:
Kunfeng Wang, Qingyuan Yang
Supported by:
Huan Zhang1,2, Peisong Yang2, Duli Yu2,3, Kunfeng Wang3, Qingyuan Yang1,2
通讯作者:
Kunfeng Wang, Qingyuan Yang
基金资助:
Huan Zhang, Peisong Yang, Duli Yu, Kunfeng Wang, Qingyuan Yang. Prediction of methane storage in covalent organic frameworks using big-data-mining approach[J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 286-296.
Huan Zhang, Peisong Yang, Duli Yu, Kunfeng Wang, Qingyuan Yang. Prediction of methane storage in covalent organic frameworks using big-data-mining approach[J]. 中国化学工程学报, 2021, 39(11): 286-296.
[1] Energy Information Administration. Annual Energy Outlook 2020 with Projections to 2050. https://www.eia.gov/outlooks/aeo/. [2] A. Schoedel, Z. Ji, O.M. Yaghi, The role of metal-organic frameworks in a carbon-neutral energy cycle, Nat. Energy 1(2016) 16034. [3] K.J. Korman, G.E. Decker, M.R. Dworzak, M.M. Deegan, A.M. Antonio, G.A. Taggart, E.D. Bloch, Using low-pressure methane adsorption isotherms for higher-throughput screening of methane storage materials, ACS Appl. Mater. Interfaces 12(2020) 40318-40327. [4] Y. Wu, D. Tang, R.J. Verploegh, H. Xi, D.S. Sholl, Impacts of gas impurities from pipeline natural gas on methane storage in metal-organic frameworks during long-term cycling, J. Phys. Chem. C. 121(2017) 15735-15745. [5] H. Zhang, P. Deria, O.K. Farha, J.T. Hupp, R.Q. Snurr, A thermodynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal-organic frameworks, Energy Environ. Sci. 8(2015) 1501-1510. [6] T. Burchell, M. Rogers, Low pressure storage of natural gas for vehicular applications, SAE Trans. 109(2000) 2242-2246. [7] Y. Peng, V. Krungleviciute, I. Eryazici, J.T. Hupp, O.K. Farha, T. Yildirim, Methane storage in metal-organic frameworks:Current records, surprise findings, and challenges, J. Am. Chem. Soc. 135(2013) 11887-11894. [8] C.M. Simon, J. Kim, D.A. Gomez-Gualdron, J.S. Camp, Y.G. Chung, R.L. Martin, R. Mercado, M.W. Deem, D. Gunter, M. Haranczyk, D.S. Sholl, R.Q. Snurr, B. Smit, The materials genome in action:Identifying the performance limits for methane storage, Energy Environ. Sci. 8(2015) 1190-1199. [9] J.A. Mason, M. Veenstra, J.R. Long, Evaluating metal-organic frameworks for natural gas storage, Chem. Sci. 5(2014) 32-51. [10] M.E. Casco, M. Martínez-Escandell, E. Gadea-Ramos, K. Kaneko, J. SilvestreAlbero, F. Rodríguez-Reinoso, High-pressure methane storage in porous materials:are carbon materials in the pole position?, Chem Mater. 27(2015) 959-964. [11] V.C. Menon, S. Komarneni, Porous adsorbents for vehicular natural gas storage:A review, J. Porous Mater. 5(1998) 43-58. [12] P.D. Rolniak, R. Kobayashi, Adsorption of methane and several mixtures of methane and carbon dioxide at elevated pressures and near ambient temperatures on 5A and 13X molecular sieves by tracer perturbation chromatography, AIChE J. 26(1980) 616-625. [13] Y. He, W. Zhou, G. Qian, B. Chen, Methane storage in metal-organic frameworks, Chem. Soc. Rev. 43(2014) 5657-5678. [14] B. Liu, C. Sun, G. Chen, Molecular simulation studies of separation of CH4/H2 mixture in metal-organic frameworks with interpenetration and mixedligand, Chem. Eng. Sci. 66(2011) 3012-3019. [15] B. Wang, L.-H. Xie, X. Wang, X.-M. Liu, J. Li, J.-R. Li, Applications of metal- organic frameworks for green energy and environment:New advances in adsorptive gas separation, storage and removal, Green Energy Environ. 3(2018) 191-228. [16] B.M. Connolly, D.G. Madden, A.E.H. Wheatley, D. Fairen-Jimenez, Shaping the future of fuel:Monolithic metal-organic frameworks for high-density gas storage, J. Am. Chem. Soc. 142(2020) 8541-8549. [17] J.A. Mason, J. Oktawiec, M.K. Taylor, M.R. Hudson, J. Rodriguez, J.E. Bachman, M.I. Gonzalez, A. Cervellino, A. Guagliardi, C.M. Brown, P.L. Llewellyn, N. Masciocchi, J.R. Long, Methane storage in flexible metal-organic frameworks with intrinsic thermal management, Nature 527(2015) 357-361. [18] H.-M. Wen, B. Li, L. Li, R.B. Lin, W. Zhou, G. Qian, B. Chen, A metal-organic framework with optimized porosity and functional sites for high gravimetric and volumetric methane storage working capacities, Adv. Mater. 30(2018) 1704792. [19] Z. Chen, P. Li, R. Anderson, X. Wang, X. Zhang, L. Robison, L.R. Redfern, S. Moribe, T. Islamoglu, D.A. Gómez-Gualdrón, T. Yildirim, J.F. Stoddart, O.K. Farha, Balancing volumetric and gravimetric uptake in highly porous materials for clean energy, Science 368(2020) 297-303. [20] D. Alezi, Y. Belmabkhout, M. Suyetin, P.M. Bhatt, Ł.J. Weselin ′ ski, V. Solovyeva, K. Adil, I. Spanopoulos, P.N. Trikalitis, A.-H. Emwas, M. Eddaoudi, MOF crystal chemistry paving the way to gas storage needs:aluminum-based soc-MOF for CH4, O2, and CO2 storage, J. Am. Chem. Soc. 137(2015) 13308-13318. [21] C.S. Diercks, O.M. Yaghi, The atom, the molecule, and the covalent organic framework, Science 355(2017) eaal1585. [22] L. Ascherl, T. Sick, J.T. Margraf, S.H. Lapidus, M. Calik, C. Hettstedt, K. Karaghiosoff, M. Döblinger, T. Clark, K.W. Chapman, F. Auras, T. Bein, Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks, Nat. Chem. 8(2016) 310-316. [23] T. Ma, E.A. Kapustin, S.X. Yin, L. Liang, Z. Zhou, J. Niu, L.-H. Li, Y. Wang, J. Su, J. Li, X. Wang, W.D. Wang, W. Wang, J. Sun, O.M. Yaghi, Single-crystal X-ray diffraction structures of covalent organic frameworks, Science 361(2018) 48- 52. [24] Z. Li, T. He, Y. Gong, D. Jiang, Covalent organic frameworks:pore design and interface engineering, Acc. Chem. Res. 53(2020) 1672-1685. [25] X. Guan, F. Chen, Q. Fang, S. Qiu, Design and applications of three dimensional covalent organic frameworks, Chem. Soc. Rev. 49(2020) 1357-1384. [26] Z. Wang, S. Zhang, Y. Chen, Z. Zhang, S. Ma, Covalent organic frameworks for separation applications, Chem. Soc. Rev. 49(2020) 708-735. [27] J. Huang, H. Xing, S. Yang, Y. Cao, C. Yuan, Y. Liu, J. Wang, Y. Cui, Microporous 3D covalent organic frameworks for liquid chromatographic separation of xylene isomers and ethylbenzene, J. Am. Chem. Soc. 141(2019) 8996- 9003. [28] Y. Zeng, R. Zou, Y. Zhao, Carbon dioxide capture:Covalent organic frameworks for CO2 capture, Adv. Mater. 28(2016) 2855-2873. [29] S. Yuan, X. Li, J. Zhu, G. Zhang, P. Van Puyvelde, B. der Bruggen, Covalent organic frameworks for membrane separation, Chem. Soc. Rev. 48(2019) 2665-2681. [30] H. Furukawa, O.M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications, J. Am. Chem. Soc. 131(2009) 8875-8883. [31] J.L. Mendoza-Cortes, T.A. Pascal, W.A. Goddard, Design of covalent organic frameworks for methane storage, J. Phys. Chem. A. 115(2011) 13852-13857. [32] J. Hu, J. Zhao, T. Yan, Methane uptakes in covalent organic frameworks with double halogen substitution, J. Phys. Chem. C. 119(2015) 2010-2014. [33] A. Sharma, R. Babarao, N.V. Medhekar, A. Malani, Methane adsorption and separation in slipped and functionalized covalent organic frameworks, Ind. Eng. Chem. Res. 57(2018) 4767-4778. [34] M. Tong, Y. Lan, Z. Qin, C. Zhong, Computation-ready, experimental covalent organic framework for methane delivery:Screening and material design, J. Phys. Chem. C. 122(2018) 13009-13016. [35] Y.G. Chung, E. Haldoupis, B.J. Bucior, M. Haranczyk, S. Lee, H. Zhang, K.D. Vogiatzis, M. Milisavljevic, S. Ling, J.S. Camp, B. Slater, J.I. Siepmann, D.S. Sholl, R.Q. Snurr, Advances, updates, and analytics for the computation-ready, experimental metal-organic framework database:CoRE MOF 2019, J. Chem. Eng. Data. 64(2019) 5985-5998. [36] M. Tong, Y. Lan, Q. Yang, C. Zhong, High-throughput computational screening and design of nanoporous materials for methane storage and carbon dioxide capture, Green Energy Environ. 3(2018) 107-119. [37] C. Altintas, G. Avci, H. Daglar, A. Nemati Vesali Azar, S. Velioglu, I. Erucar, S. Keskin, Database for CO(2) Separation Performances of MOFs Based on Computational Materials Screening., ACS Appl. Mater. Interfaces. 10(2018) 17257-17268. [38] P. Boyd, A. Chidambaram, E. García Diez, C. Ireland, T. Daff, R. Bounds, A. Gładysiak, P. Schouwink, S.M. Moosavi, M. Maroto-Valer, J. Reimer, J. Navarro, T. Woo, S. García, K. Stylianou, B. Smit, Data-driven design of metal-organic frameworks for wet flue gas CO2 capture, Nature 576(2019) 253-256. [39] R. Mercado, R.-S. Fu, A.V. Yakutovich, L. Talirz, M. Haranczyk, B. Smit, In silico design of 2D and 3D covalent organic frameworks for methane storage applications, Chem. Mater. 30(2018) 5069-5086. [40] G.S. Fanourgakis, K. Gkagkas, E. Tylianakis, G.E. Froudakis, A universal machine learning algorithm for large-scale screening of materials, J. Am. Chem. Soc. 142(2020) 3814-3822. [41] S.-Y. Kim, S.-I. Kim, Y.-S. Bae, Machine-learning-based prediction of methane adsorption isotherms at varied temperatures for experimental adsorbents, J. Phys. Chem. C. 124(2020) 19538-19547. [42] X. Yuan, X. Deng, C. Cai, Z. Shi, H. Liang, S. Li, Z. Qiao, Machine learning and high-throughput computational screening of hydrophobic metal-organic frameworks for capture of formaldehyde from air, green, Energy Environ. (2020) 759-770. [43] R. Anderson, J. Rodgers, E. Argueta, A. Biong, D.A. Gómez-Gualdrón, Role of pore chemistry and topology in the CO2 capture capabilities of MOFs:From molecular simulation to machine learning, Chem. Mater. 30(2018) 6325-6337. [44] Z. Gülsoy, K.B. Sezginel, A. Uzun, S. Keskin, R. Yıldırım, Analysis of CH4 uptake over metal-organic frameworks using data-mining tools, ACS Comb. Sci. 21(2019) 257-268. [45] M. Fernandez, N.R. Trefiak, T.K. Woo, Atomic property weighted radial distribution functions descriptors of metal-organic frameworks for the prediction of gas uptake capacity, J. Phys. Chem. C. 117(2013) 14095-14105. [46] M. Pardakhti, P. Nanda, R. Srivastava, Impact of chemical features on methane adsorption by porous materials at varying pressures, J. Phys. Chem. C. 124(2020) 4534-4544. [47] M. Tong, Y. Lan, Q. Yang, C. Zhong, Exploring the structure-property relationships of covalent organic frameworks for noble gas separations, Chem. Eng. Sci. 168(2017) 456-464. [48] Y. Lan, X. Han, M. Tong, H. Huang, Q. Yang, D. Liu, X. Zhao, C. Zhong, Materials genomics methods for high-throughput construction of COFs and targeted synthesis, Nat. Commun. 9(2018) 5274. [49] T.F. Willems, C.H. Rycroft, M. Kazi, J.C. Meza, M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials, Microporous Mesoporous Mater. 149(2012) 134-141. [50] M.G. Martin, J.I. Siepmann, Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes, J. Phys. Chem. B. 102(1998) 2569-2577. [51] S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING:A generic force field for molecular simulations, J. Phys. Chem. 94(1990) 8897-8909. [52] T.J.H. Vlugt, E. García-Pérez, D. Dubbeldam, S. Ban, S. Calero, Computing the heat of adsorption using molecular simulations:The effect of strong coulombic interactions, J. Chem. Theory Comput. 4(2008) 1107-1118. [53] S. Haykin, Neural Networks:A Comprehensive Foundation, 1st ed., Prentice Hall PTR, USA, 1994. [54] N. Cristianini, J. Shawe-Taylor, An introduction to support vector machines and other kernel-based learning methods, Cambridge University Press, Cambridge, UK, 2000. [55] Y.-Y. Song, Y. Lu, Decision tree methods:Applications for classification and prediction, Shanghai Arch. Psychiatry. 27(2015) 130-135. [56] T.G. Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees:Bagging, boosting, and randomization, Mach. Learn. 40(2000) 139-157. [57] L. Breiman, Random forests, Mach. Learn. 45(2001) 5-32. [58] Y. Bengio, Y. Grandvalet, No unbiased estimator of the variance of K-fold crossvalidation, J. Mach. Learn. Res. 5(2004) 1089-1105. [59] C.M. Simon, R. Mercado, S.K. Schnell, B. Smit, M. Haranczyk, What are the best materials to separate a xenon/krypton mixture?, Chem Mater. 27(2015) 4459- 4475. [60] S. Wang, Comparative molecular simulation study of methane adsorption in metal organic frameworks, Energy Fuels 21(2007) 953-956. [61] Y. Wu, H. Duan, H. Xi, Machine learning-driven insights into defects of zirconium metal-organic frameworks for enhanced ethane-ethylene separation, Chem. Mater. 32(2020) 2986-2997. [62] H.M. El-Kaderi, J.R. Hunt, J.L. Mendoza-Cortés, A.P. Côté, R.E. Taylor, M. O'Keeffe, O.M. Yaghi, Designed synthesis of 3D covalent, Science 316(2007) 268-272. [63] J.-M. Lin, C.-T. He, Y. Liu, P.-Q. Liao, D.-D. Zhou, J.-P. Zhang, X.-M. Chen, A Metal-organic framework with a pore size/shape suitable for strong binding and close packing of methane, Angew. Chemie Int. Ed. 55(2016) 4674-4678. |
[1] | Huiqi Wang, Jianpo Ren, Shihao Zhang, Jiayu Dai, Yue Niu, Ketao Shi, Qiuxiang Yin, Ling Zhou. Measurement and correlation of solubility of 9-fluorenone in 11 pure organic solvents from T = 283.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 235-241. |
[2] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[3] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 135-145. |
[4] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[5] | Yaran Bu, Changchun Wu, Lili Zuo, Qian Chen. The calculation and optimal allocation of transmission capacity in natural gas networks with MINLP models [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 251-261. |
[6] | Junhao Wang, Shugang Ma, Peng Chen, Zhipeng Li, Zhengming Gao, J. J. Derksen. Mixing of miscible shear-thinning fluids in a lid-driven cavity [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 112-123. |
[7] | Weikai Ren, Runsong Dai, Ningde Jin. Modeling of liquid film thickness around Taylor bubbles rising in vertical stagnant and co-current slug flowing liquids [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 179-194. |
[8] | Hongwei Liang, Wenling Li, Zisheng Feng, Jianming Chen, Guangwen Chu, Yang Xiang. Numerical simulation of gas-liquid flow in the bubble column using Wray-Agarwal turbulence model coupled with population balance model [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 205-223. |
[9] | Yun-Zhang Liu, Lu-Yao Zhang, Dan He, Li-Zhen Chen, Zi-Shuai Xu, Jian-Long Wang. Solubility measurement, correlation and thermodynamic properties of 2, 3, 4-trichloro-1, 5-dinitrobenzene in fifteen mono-solvents at temperatures from 278.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 224-233. |
[10] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 244-255. |
[11] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 10-16. |
[12] | Li Xia, Yule Pan, Tingting Zhao, Xiaoyan Sun, Shaohui Tao, Yushi Chen, Shuguang Xiang. Estimating heat capacities of liquid organic compounds based on elements and chemical bonds contribution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 30-38. |
[13] | Xiongzhuo Zhu, Dali Gao, Chong Yang, Chunjie Yang. A blast furnace fault monitoring algorithm with low false alarm rate: Ensemble of greedy dynamic principal component analysis-Gaussian mixture model [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 151-161. |
[14] | Pengbao Lian, Lizhen Chen, Dan He, Guangyuan Zhang, Zishuai Xu, Jianlong Wang. Crystallization thermodynamics of 2,4(5)-dinitroimidazole in binary solvents [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 173-182. |
[15] | Haoshan Duan, Xi Meng, Jian Tang, Junfei Qiao. Prediction of NOx concentration using modular long short-term memory neural network for municipal solid waste incineration [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 46-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||