[1] E. Ekpa, O.M. Folake, R. Adeoye, Effects of various environmental conditions on the rancidity levels of some edible oil sold in Lokoja metropolis of Kogi State, Nut. Food Toxicol., 1 (2017) 118-129 [2] E. Choe, D.D. Min, Mechanisms and factors for edible oil oxidation, Comp. Rev. Food Sci. Food Saf., 5 (2006) 169-186 [3] D.B. Min, J. Wen, Effects of dissolved free oxygen on the volatile compounds of oil, J. Food Sci., 48 (1983) 1429-1430 [4] F.A. Aladedunye, Curbing thermo-oxidative degradation of frying oils: Current knowledge and challenges, Eur. J. Lipid Sci. Technol., 117 (2015) 1867-1881 [5] S. Karakaya, S. Şimşek, Changes in total polar compounds, peroxide value, total phenols and antioxidant activity of various oils used in deep fat frying, JAOCS, 88 (2011) 1361-1366 [6] R. Ma, T. Gao, L. Song, L. Zhang, Y. Jiang, J. Li, Effects of oil-water mixed frying and pure-oil frying on the quality characteristics of soybean oil and chicken chop, Food Sci. Technol., 36 (2016) 1-8 [7] W.W. Nawar, Chemical changes in lipids produced by thermal processing, J. Chem. Educ., 61 (1984) 299-302 [8] B.M. Bhosle, R. Subramanian, New approaches in deacidification of edible oils - A review, J. Food Eng., 69 (2005) 481-494 [9] A.B. Bhattacharya, M.G. Sajilata, R.S. Singhal, Lipid profile of foods fried in thermally polymerized palm oil, Food Chem., 109 (2008) 808-812 [10] E.C.R. Christianne, C.B. Goncalves, E. Batista, A.J.A. Meirelles, Deacidification of vegetable oils by solvent extraction, Recent Pat. Eng., 1 (2008) 95-102 [11] Y. Jamal, B.O. Boulanger, Separation of oleic acid from soybean oil using mixed-bed resins, J. Chem. Eng. Data, 55 (2010) 2405-2409 [12] C. McGovern, Commoditization of nanomaterials, Nanotechnol. Perceptions, 6 (2010) 155-178 [13] C.M. Portela, A. Vidyasagar, S. Krödel, T. Weissenbach, D.W. Yee, J.R. Greer, D.M. Kochmann, Extreme mechanical resilience of self-assembled nanolabyrinthine materials, Proc. Nat. Acad. Sci., 117 (2020) 5686-5693 [14] A. Kumar, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26 (2005) 3995-4021 [15] A.A. Bharde, R.Y. Parikh, M. Baidakova, S. Jouen, B. Hannoyer, T. Enoki, B.L.V. Prasad, Y.S. Shouche, S. Ogale, M. Sastry, Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles, Langmuir, 24 (2008) 5787-5794 [16] O. Bomatí-miguel, L. Mazeina, A. Navrotsky, Calorimetric study of maghemite nanoparticles synthesized by laser-induced pyrolysis, Chem. Mater., 20 (2008) 591-598 [17] D. Gherca, A. Pui, N. Cornei, A. Cojocariu, V. Nica, O. Caltun Synthesis, characterization and magnetic properties of MFe2O4 (M=Co, Mg, Mn, Ni) nanoparticles using ricin oil as capping agent, J. Magnetism Magnet. Mat., 324 (2012) 3906-3911 [18] S. Majidi, F.Z. Sehrig, S.M. Farkhani, M.S. Goloujeh, A. Akbarzadeh Current methods for synthesis of magnetic nanoparticles. Artif. Cells, Nanomed. Biotechnol., 44 (2014) 722-734 [19] A. Adewuyi, R.A. Oderinde, S.O. Fayemi, Fatty hydroxamic acid mixture from underutilized Adansonia digitata seed oil: A potential means for scavenging free radicals and combating drug resistant microorganisms, La Riv. Ita. Delle Sostan. Grasse, XCVI (2019) 269-284 [20] A. Adewuyi, R.B.N. Prasad, B.V.S.K. Rao, R.A. Oderinde, Oil composition, mineral nutrient and fatty acid distribution in the lipid classes of underutilized oils of Trilepisium madagascariense and Antiaris africana from Nigeria, Food Res. Int., 43 (2010) 665-670 [21] M. Kooti, A.N. Sedeh, Synthesis and characterization of NiFe2O4 magnetic nanoparticles by combustion method, J. Mat. Sci. Technol. 29 (2013) 34-38 [22] P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and characterization of NiFe2O4 nanoparticles and nanorods. J. Alloys Comp. 563 (2013) 6-11 [23] A. Aghazadeh, A.N. Golikand, M. Ghaemi, Synthesis, characterization, and electrochemical properties of ultrafine β-Ni(OH)2 nanoparticles, Int. J. Hydrogen Ener., 36 (2011) 8674-8679 [24] B. Shruthi, B.J. Madhu, R.V. Bheema, S. Vynatheya, D.B. Veena, G.V. Jayashree, C.R. Ravikumar, Synthesis, spectroscopic analysis and electrochemical performance of modified β-nickel hydroxide electrode with CuO, J. Sci.: Adv. Mater. Devices, 2 (2017) 93-98 [25] P. Jeevanandam, Y. Koltypin, A. Gedanken, Synthesis of nanosized α-nickel hydroxide by a sonochemical method, Nano Lett., 1 (2001) 263-266 [26] P. Sivakumara, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Synthesis, studies and growth mechanism of ferromagnetic NiFe2O4 nanosheet, Appl. Surf. Sci., 258 (2012) 6648-6652 [27] S. Ameer, I.H. Gul, Influence of reduced graphene oxide on effective absorption bandwidth shift of hybrid absorbers, PLoS ONE, 11(6) (2016) e0153544 [28] S. Maensiri, C. Masingboon, B. Boonchom, S. Seraphin, A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white, Scripta Mater., 56 (2007) 797-800 [29] P.B. Liu, Y. Huang, X. Zhang, Enhanced electromagnetic absorption properties of reduced graphene oxide-polypyrrole with NiFe2O4 particles prepared with simple hydrothermal method, Mater. Lett., 120 (2014) 143-146 [30] M. Nadafan, M. Parishani, Z. Dehghania, J.Z. Anvari, R. Malekfar, Third-order nonlinear optical properties of NiFe2O4 nanoparticles by Z-scan technique, Optik, 144 (2017) 672-678 [31] S. Qu, J. Wang, J.L. Kong, P.Y. Yang, G. Chen, Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing, Talanta, 71 (2007) 1096-1102 [32] C. Hammond, The basics of crystallography and diffraction, Oxford University Press, Oxford, 1997 [33] P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Synthesis and characterization of NiFe2O4 nanosheet via polymer assisted co-precipitation method. Mater. Lett., 65 (2011) 483-485 [34] S.J. Greg, K.S.W. Sing, Adsorption, surface area, and porosity, Academic, New York, 1997 [35] K.K. Senapati, S. Roy, C. Borgohain, P. Phukan, Palladium nanoparticle supported on cobalt ferrite: An efficient magnetically separable catalyst for ligand free Suzuki coupling, J. Molec. Catal. A: Chem., 352 (2012) 128-134 [36] A. Adewuyi, F.V. Pereira, Nitrilotriacetic acid functionalized Adansonia digitata biosorbent: Preparation, characterization and sorption of Pb (II) and Cu (II) pollutants from aqueous solution. J. Adv. Res., 7 (2016) 947-959 [37] N. Ayawei, A.T. Ekubo, D. Wankasi, E.D. Dikio, Adsorption of congo red by Ni/Al-CO3: equilibrium, thermodynamic and kinetic studies, Orient. J. Chem., 31 (2015) 1307-1318 [38] S. Goldberg, Equations and models describing adsorption processes in soils. Soil science society of America, 677 S. Segoe road, Madison, WI 53711, USA. Chemical processes in soils. SSSA Book Series, USA, 2005. [39] O.A. Ekpete, M. Horsfall Jnr, A.I. Spiff, Kinetics of chlorophenol adsorption onto commercial and fluted pumpkin activated carbon in aqueous systems, Asian J. Nat. Appl. Sci., 1 (2012) 106-117 [40] K.R. Ranjith, R.P. Hanumantha, M. Arumugam, Lipid extraction methods from microalgae: a comprehensive review, Front Ener. Res., 2 (2015) 61 [41] A. Adewuyi, R.A. Oderinde, Chemically modified vermiculite clay: A means to removing emerging contaminant from polluted water system in developing nation, Polym. Bull., 76 (2019) 4967-4989 |