[1] S. Gupta, Natural gas - extraction to end use[M]. InTech, Rijeka, 2012 [2] J. Kopyscinski, T.J. Schildhauer, S.M.A. Biollaz, Production of synthetic natural gas (SNG) from coal and dry biomass - A technology review from 1950 to 2009, Fuel 89 (8) (2010) 1763–1783 [3] S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran, S. Bajohr, Review on methanation-From fundamentals to current projects, Fuel 166 (2016) 276–296 [4] J.J. Gao, Y.L. Wang, Y. Ping, D.C. Hu, G.W. Xu, F.N. Gu, F.B. Su, A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas, RSC Adv. 2 (6) (2012) 2358 [5] N.S. Govender, F.G. Botes, M.H.J.M. de Croon, J.C. Schouten, Mechanistic pathway for methane formation over an iron-based catalyst, J. Catal. 260 (2) (2008) 254–261 [6] Z.F. Qin, J. Ren, M.Q. Miao, Z. Li, J.Y. Lin, K.C. Xie, The catalytic methanation of coke oven gas over Ni-Ce/Al2O3 catalysts prepared by microwave heating: Effect of amorphous NiO formation, Appl. Catal. B: Environ. 164 (2015) 18–30 [7] J.J. Gao, C.M. Jia, J. Li, F.N. Gu, G.W. Xu, Z.Y. Zhong, F.B. Su, Nickel catalysts supported on Barium hexaaluminate for enhanced CO methanation, Ind. Eng. Chem. Res. 51 (31) (2012) 10345–10353 [8] H.W. Zhu, R. Razzaq, L. Jiang, C.S. Li, Low-temperature methanation of CO in coke oven gas using single nanosized Co3O4 catalysts, Catal. Commun. 23 (2012) 43–47 [9] K.O. Xavier, R. Sreekala, K.K.A. Rashid, K.K.M. Yusuff, B. Sen, Doping effects of cerium oxide on Ni/Al2O3 catalysts for methanation, Catal. Today 49 (1–3) (1999) 17–21 [10] S.H. Kang, J.H. Ryu, J.H. Kim, S.J. Seo, Y.D. Yoo, P.S. Sai Prasad, H.J. Lim, C.D. Byun, Co-methanation of CO and CO2 on the Nix-Fe1-x/Al2O3 catalysts; effect of Fe contents, Korean J. Chem. Eng. 28 (12) (2011) 2282–2286 [11] A.L. Kustov, A.M. Frey, K.E. Larsen, T. Johannessen, J.K. Nørskov, C.H. Christensen, CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization, Appl. Catal. A: Gen. 320 (2007) 98–104 [12] S. Takenaka, T. Shimizu, K. Otsuka, Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts, Int. J. Hydrog. Energy 29 (10) (2004) 1065–1073 [13] D.C. Hu, J.J. Gao, Y. Ping, L.H. Jia, P. Gunawan, Z.Y. Zhong, G.W. Xu, F.N. Gu, F.B. Su, Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production, Ind. Eng. Chem. Res. 51 (13) (2012) 4875–4886 [14] K. Urasaki, Y.T. Tanpo, Y. Nagashima, R. Kikuchi, S. Satokawa, Effects of preparation conditions of Ni/TiO2 catalysts for selective CO methanation in the reformate gas, Appl. Catal. A: Gen. 452 (2013) 174–178 [15] Y. Yu, G.Q. Jin, Y.Y. Wang, X.Y. Guo, Synthetic natural gas from CO hydrogenation over silicon carbide supported nickel catalysts, Fuel Process. Technol. 92 (12) (2011) 2293–2298 [16] J.J. Gao, Q. Liu, F.N. Gu, B. Liu, Z.Y. Zhong, F.B. Su, Recent advances in methanation catalysts for the production of synthetic natural gas, RSC Adv. 5 (29) (2015) 22759–22776 [17] M.G. O'Brien, S.D.M. Jacques, M. di Michiel, P. Barnes, B.M. Weckhuysen, A.M. Beale, Active phase evolution in single Ni/Al2O3methanation catalyst bodies studied in real time using combined μ-XRD-CT and μ-absorption-CT, Chem. Sci. 3 (2) (2012) 509–523 [18] S.L. Ma, Y.S. Tan, Y.Z. Han, Methanation of syngas over coral reef-like Ni/Al2O3 catalysts, J. Nat. Gas Chem. 20 (4) (2011) 435–440 [19] A.M. Zhao, W.Y. Ying, H.T. Zhang, H.F. Ma, D.Y. Fang, Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation, Catal. Commun. 17 (2012) 34–38 [20] F.B. Derekaya, G. Yaşar, The CO methanation over NaY-zeolite supported Ni/Co3O4, Ni/ZrO2, Co3O4/ZrO2 and Ni/Co3O4/ZrO2 catalysts, Catal. Commun. 13 (1) (2011) 73–77 [21] Y.J. Liu, J.J. Gao, Q. Liu, F.N. Gu, X.P. Lu, L.H. Jia, G.W. Xu, Z.Y. Zhong, F.B. Su, Preparation of high-surface-area Ni/α-Al2O3 catalysts for improved CO methanation, RSC Adv. 5 (10) (2015) 7539–7546 [22] K.R. Kaza, J. Villadsen, R. Jackson, 3 Intraparticle diffusion effects in the methanation reaction, Chem. Eng. Sci. 35 (1–2) (1980) 17–24 [23] S.S.E.H. Elnashaie, M.E.E. Abashar, Steam reforming and methanation effectiveness factors using the dusty gas model under industrial conditions, Chem. Eng. Process.: Process. Intensif. 32 (3) (1993) 177–189 [24] D. Mears, Tests for transport limitations in experimental catalytic reactors, Ind. Eng. Chem. Process. Des. Dev. 11 (2) (1972) 320 [25] G.M. Karthik, V.V. Buwa, Particle-resolved simulations of methane steam reforming in multilayered packed beds, AIChE J. 64 (11) (2018) 4162–4176 [26] J.S.S. Mohammadzadeh, A. Zamaniyan, Catalyst shape as a design parameter—optimum shape for methane-steam reforming catalyst, Chem. Eng. Res. Des. 80 (4) (2002) 383–391 [27] C. Italiano, J. Llorca, L. Pino, M. Ferraro, V. Antonucci, A. Vita, CO and CO2 methanation over Ni catalysts supported on CeO2, Al2O3 and Y2O3 oxides, Appl. Catal. B: Environ. 264 (2020) 118494 [28] J. Kopyscinski, T.J. Schildhauer, F. Vogel, S.M.A. Biollaz, A. Wokaun, Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation, J. Catal. 271 (2) (2010) 262–279 [29] K. Khorsand, M.A. Marvast, N. Pooladian, M. Kakavand, Modeling and simulation of methanation catalytic reactor in ammonia unit, Petroleum Coal 49 (1) (2007) 46–53 [30] F. Kapteijn, A.M. Jacob, Laboratory catalytic reactors: Aspects of catalyst testing,Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008 [31] R. Byron Bird, Transport phenomena, Appl. Mech. Rev. 55(1) (2002) R1–R4. [32] E.N. Fuller, P.D. Schettler, J.C. Giddings, New method for prediction of binary gas-phase diffusion coefficients, Ind. Eng. Chem. 58 (5) (1966) 18–27 [33] M. Kleiber, R. Joh, D1 calculation methods for thermophysical properties. VDI Heat Atlas, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 119–152. [34] A.M. Zhao, W.Y. Ying, H.T. Zhang, H.F. Ma, D.Y. Fang, Ni/Al2O3 catalysts for syngas methanation: Effect of Mn promoter, J. Nat. Gas Chem. 21 (2) (2012) 170–177 [35] C.L. Yaws, Chemical properties handbook, McGraw-Hill, New York, 1999 [36] B.E. Poling, M.J. Prausnitz, J.P. O'connell, The properties of gases and liquids, McGraw-Hill, New York, 2001. [37] S. Bac, A.K. Avci, Ethylene oxide synthesis in a wall-coated microchannel reactor with integrated cooling, Chem. Eng. J. 377 (2019) 120104 [38] Y. Dong, F.J. Keil, O. Korup, F. Rosowski, R. Horn, Effect of the catalyst pore structure on fixed-bed reactor performance of partial oxidation of n-butane: a simulation study, Chem. Eng. Sci. 142 (2016) 299–309 [39] Y. Shi, C.F. Yang, X.Q. Zhao, Y.Q. Cao, G. Qian, M.K. Lu, G.H. Ye, C. Peng, B.K. Sui, Z. Lv, W.K. Yuan, X.Z. Duan, X.G. Zhou, Engineering the hierarchical pore structures and geometries of hydrodemetallization catalyst pellets, Ind. Eng. Chem. Res. 58 (23) (2019) 9829–9837 [40] J. Kopyscinski, Production of synthetic natural gas in a fluidized bed reactor,Ph. D. Thesis, ETH Zurich,Switzerland, 2010 [41] H. Er-Rbib, C. Bouallou, Modeling and simulation of CO methanation process for renewable electricity storage, Energy 75 (2014) 81–88 [42] X.Q. Zhao, C.F. Yang, M.K. Lu, Y. Shi, G. Qian, X.G. Zhou, X.Z. Duan, Coupling non-isothermal trickle-bed reactor with catalyst pellet models to understand the reaction and diffusion in gas oil hydrodesulfurization, Chin. J. Chem. Eng. 28 (4) (2020) 1095–1106 [43] Y. Shi, G.H. Ye, C.F. Yang, Y.Q. Tang, C. Peng, G. Qian, W.K. Yuan, X.Z. Duan, X.G. Zhou, Pore engineering of hierarchically structured hydrodemetallization catalyst pellets in a fixed bed reactor, Chem. Eng. Sci. 202 (2019) 336–346 [44] A.P. Kagyrmanova, I.A. Zolotarskii, E.I. Smirnov, N.V. Vernikovskaya, Optimum dimensions of shaped steam reforming catalysts, Chem. Eng. J. 134 (1–3) (2007) 228–234 [45] F.J. Keil, C. Rieckmann, Optimization of three-dimensional catalyst pore structures, Chem. Eng. Sci. 49 (24) (1994) 4811–4822 |