[1] S. Sharma, S.M. Basu, N.P. Shetti, T.M. Aminabhavi, Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy, Sci. Total. Environ. 713 (2020) 136633 [2] R. Chamoun, U.B. Demirci, P. Miele, Cyclic dehydrogenation-(Re)hydrogenation with hydrogen-storage materials: An overview, Energy Technol. 3 (2) (2015) 100–117 [3] A. Midilli, M. Ay, I. Dincer, M.A. Rosen, On hydrogen and hydrogen energy strategies: I: current status and needs, Renew. Sustain. Energy Rev. 9 (3) (2005) 255–271 [4] D. Das, T.N. Veziroǧlu, Hydrogen production by biological processes: A survey of literature, Int. J. Hydrog. Energy 26 (1) (2001) 13–28 [5] H. Yokoi, R. Maki, J. Hirose, S. Hayashi, Microbial production of hydrogen from starch-manufacturing wastes, Biomass Bioenergy 22 (5) (2002) 389–395 [6] C.A. Aceves-Lara, E. Latrille, J.P. Steyer, Optimal control of hydrogen production in a continuous anaerobic fermentation bioreactor, Int. J. Hydrog. Energy 35 (19) (2010) 10710–10718 [7] H.T. Hwang, A. Varma, Hydrogen storage for fuel cell vehicles, Curr. Opin. Chem. Eng. 5 (2014) 42–48 [8] W.N. Association, Heat Values of Various Fuels. 2018 [cited 2019 21/09/2019]; Available from: https://www.world-nuclear.org/information-library/facts-and-figures/heat-values-of-various-fuels.aspx. [9] S. Venkata Mohan, V. Lalit Babu, P.N. Sarma, Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): Effect of organic loading rate, Enzym. Microb. Technol. 41 (4) (2007) 506–515 [10] B.E. Logan, D. Call, S.A. Cheng, H.V.M. Hamelers, T.H.J.A. Sleutels, A.W. Jeremiasse, R.A. Rozendal, Microbial electrolysis cells for high yield hydrogen gas production from organic matter, Environ. Sci. Technol. 42 (23) (2008) 8630–8640 [11] B. Wang, W.Z. Liu, W.W. Cai, J.Q. Li, L.H. Yang, X.Q. Li, H. Wang, T.T. Zhu, A.J. Wang, Reinjection oilfield wastewater treatment using bioelectrochemical system and consequent corrosive community evolution on pipe material, J. Biosci. Bioeng. 129 (2) (2020) 199–205 [12] Azwar, M.A. Hussain, A.K. Abdul-Wahab, M.F. Zanil, Mukhlishien, Design of neural network model-based controller in a fed-batch microbial electrolysis cell reactor for bio-hydrogen gas production, IOP Conf. Ser.: Mater. Sci. Eng. 334 (2018) 012021 [13] B. Wang, W.Z. Liu, Y.F. Zhang, A.J. Wang, Bioenergy recovery from wastewater accelerated by solar power: Intermittent electro-driving regulation and capacitive storage in biomass, Water Res. 175 (2020) 115696 [14] R.P. Pinto, B. Srinivasan, A. Escapa, B. Tartakovsky, Multi-population model of a microbial electrolysis cell, Environ. Sci. Technol. 45 (11) (2011) 5039–5046 [15] A.J. Wang, W.Z. Liu, S.A. Cheng, D.F. Xing, J.Z. Zhou, B.E. Logan, Source of methane and methods to control its formation in single chamber microbial electrolysis cells, Int. J. Hydrog. Energy 34 (9) (2009) 3653–3658 [16] R. Karthikeyan, K.Y. Cheng, A. Selvam, A. Bose, J.W.C. Wong, Bioelectrohydrogenesis and inhibition of methanogenic activity in microbial electrolysis cells - A review, Biotechnol. Adv. 35 (6) (2017) 758–771 [17] X.P. Zheng, X.S. Yuan, X.Y. Lai, R.N. Jia, Y.S. Zhu, Z.H. Zhang, X.Z. Hou, Y. Zhao, G. Zhao, Y.Q. Peng, Hydrogen storage performance of HPSB hydrogen storage materials, Chem. Phys. Lett. 734 (2019) 136697 [18] C.H. Chao, J.J. Shieh, Control and management for hydrogen energy systems, in International Conference on Energy, Environment, Devices, Systems, Communications, Computers (EEDSCC'11). 2011. [19] N. Van Dresar, C. Lin, M. Hasan, Self-pressurization of a flightweight liquid hydrogen tank - Effectsof fill level at low wall heat flux30th Aerospace Sciences Meeting and Exhibit. 06 January 1992–09 January 1992, Reno, NV. Reston, Virginia: AIAA, 1992 [20] S. Barsi, M. Kassemi, Validation of self-pressurization models in normal gravity, AIAA Paper, 2007 (2007-952). [21] J.J. Shuang, Y.W. Liu, Efficiency analysis of depressurization process and pressure control strategies for liquid hydrogen storage system in microgravity, Int. J. Hydrog. Energy 44 (30) (2019) 15949–15961 [22] T.F. Edgar, Control and operations: When does controllability equal profitability?. Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2003: 48–61 [23] Moradi M.H., Advances in pid control, Int. J. Adapt. Control Signal Process. 16 (2)(2002) 175–176 [24] L.W. Wang, S.H. Hwang, Identification and control for unstable processes of three dynamic types, Chem. Eng. Commun. 192 (1)(2005)34–61 [25] M. Shamsuzzoha, S. Skogestad, The setpoint overshoot method: A simple and fast closed-loop approach for PID tuning, J. Process. Control. 20 (10) (2010) 1220–1234 [26] J.L. Guzman, K.J. Astrom, S. Dormido, T. Hagglund, M. Berenguel, Y. Piguet, Interactive learning modules for PID control [Lecture Notes, IEEE Control. Syst. Mag. 28 (5) (2008) 118–134 [27] A. Yousefi-Darani, O. Paquet-Durand, B. Hitzmann, Application of fuzzy logic control for the dough proofing process, Food Bioprod. Process. 115 (2019) 36–46 [28] A.M. Yahya, M.A. Hussain, A.K. Abdul Wahab, Modeling, optimization, and control of microbial electrolysis cells in a fed-batch reactor for production of renewable biohydrogen gas, Int. J. Energy Res. 39 (4) (2015) 557–572 [29] A.S. Kumar, Z. Ahmad, Model predictive control (mpc) and its current issues in chemical engineering, Chem. Eng. Commun. 199 (4) (2012) 472–511 [30] P. Orukpe, Model predictive control fundamentals, Nigerian Journal of Technology, 31(2) (2012) 139–148 [31] A. Ashoori, B. Moshiri, A. Khaki-Sedigh, M.R. Bakhtiari, Optimal control of a nonlinear fed-batch fermentation process using model predictive approach, J. Process. Control. 19 (7) (2009) 1162–1173 [32] L. Fan, J. Zhang, X. Shi, Performance improvement of a microbial fuel cell based on model predictive control. Int. J. Electrochem. Sci, 10(1) (2015) 737–748 [33] M.L. Darby, M. Harmse, M. Nikolaou, MPC: Current practice and challenges, IFAC Proc. Vol. 42 (11) (2009) 86–98 [34] M.Y. Azwar, Modelling and on-line implementation of advanced control strategies for biohydrogen production in microbial electrolysis cell reactor system, Ph D. Thesis, University of Malaya, Kuala Lumpur, Malaysia, 2017. [35] A.A. Mas’ud, J.A. Ardila-Rey, R. Albarracín, F. Muhammad-Sukki, N.A. Bani, Comparison of the performance of artificial neural networks and fuzzy logic for recognizing different partial discharge sources, Energies 10 (7) (2017) 1060 [36] A. Poursamad, M. Montazeri, Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles, Control. Eng. Pract. 16 (7) (2008) 861–873 [37] V. Galzina, T. Šarić, R. Lujić, Application of fuzzy logic in boiler control, Tehnički vjesnik, 15(4) (2008) 15–21 [38] J.Y.M. Cheung, Fuzzy logic control of refrigerant flow UKACC International Conference on Control. Control '96. Exeter, UK. IEE, 1996. [39] G. Olsson, M. Nielsen, Z. Yuan, A. Lynggaard-Jensen, J.P. Steyer, Instrumentation, control and automation in wastewater systems, Water Intell. Online 4 (2015) 9781780402680 [40] M. Stanke, V. Zettel, S. Schütze, B. Hitzmann, Measurement and mathematical modeling of the relative volume of wheat dough during proofing, J. Food Eng. 131 (2014) 58–64 [41] M. Yan, L. Fan, Constant voltage output in two-chamber microbial fuel cell under fuzzy PID control, International Journal of Electrochemical Science, 8 (2013) 3321–3332 [42] S. Bououden, M. Chadli, H.R. Karimi, Control of uncertain highly nonlinear biological process based on Takagi-Sugeno fuzzy models, Signal Process. 108 (2015) 195–205 [43] A. Vasičkaninová, M. Bakošová, A. Mészáros, Control of a biochemical process using fuzzy approach, 2017 21st International Conference on Process Control (PC). June 6-9, 2017, Strbske Pleso, Slovakia. IEEE, (2017) 173–178 [44] Q.Z. Luo, A.M. An, H.C. Zhang, F.C. Meng, Non-linear performance analysis and voltage control of MFC based on feedforward fuzzy logic PID strategy, J. Central South Univ. 26 (12) (2019) 3359–3371 [45] Frei A.A.M., Demirel H., Erkal B., Design, implementation and evaluation of fuzzy logic and PID controllers for fuel cell systems, Int. J. Electron. Electr. Eng. 5 (1)(2017) 84–89 [46] R.P. Pinto, B. Srinivasan, M.F. Manuel, B. Tartakovsky, A two-population bio-electrochemical model of a microbial fuel cell, Bioresour. Technol. 101 (14) (2010) 5256–5265 [47] D.A. Noren, M.A. Hoffman, Clarifying the Butler-Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models, J. Power Sources 152 (2005) 175–181 [48] T.A. Johnson, S.W. Jorgensen, D.E. Dedrick, Performance of a full-scale hydrogen-storage tank based on complex hydrides, Faraday Discuss. 151 (2011) 327 [49] G. Prabhakar, S. Selvaperumal, P. Nedumal Pugazhenthi, Fuzzy PD plus I control-based adaptive cruise control system in simulation and real-time environment, IETE J. Res. 65 (1) (2019) 69–79 [50] M.S. Rahman, M.M. Rashid, M.A. Hussain, Thermal conductivity prediction of foods by Neural Network and Fuzzy (ANFIS) modeling techniques, Food Bioprod. Process. 90 (2) (2012) 333–340 [51] A. Kheirandish, F. Motlagh, N. Shafiabady, M. Dahari, A. Khairi Abdul Wahab, Dynamic fuzzy cognitive network approach for modelling and control of PEM fuel cell for power electric bicycle system, Appl. Energy 202 (2017) 20–31 [52] K.M. Passino, S. Yurkovich, M. Reinfrank, Fuzzy Control. Addison Wesley Longman, Inc., MA (1998) [53] J.J.L. Tiong, C.W. Mai, P.W. Gan, J. Johnson, V.S.L. Mak, Separation of prescribing and dispensing in Malaysia: The history and challenges, Int. J. Pharm. Pract. 24 (4) (2016) 302–305 [54] C.C. Lee, Fuzzy logic in control systems: Fuzzy logic controller. I, IEEE Trans. Syst. Man Cybern. 20 (2) (1990) 404–418 [55] M. Tabatabaei, R. Barati-Boldaji, Non-overshooting PD and PID controllers design, Automatika 58 (4) (2017) 400–409 [56] K. Rashed, G. Alwan, Effect of noise disturbances on the response of measuring devices, Tikrit Journal of Engineering Sciences, 15(2) (2008) 50–61 |