Chinese Journal of Chemical Engineering ›› 2022, Vol. 41 ›› Issue (1): 42-48.DOI: 10.1016/j.cjche.2021.09.023
• Review • Previous Articles Next Articles
Fangqi Mao, Peipei Hao, Yuquan Zhu, Xianggui Kong, Xue Duan
Received:
2021-06-28
Revised:
2021-09-23
Online:
2022-02-25
Published:
2022-01-28
Contact:
Xianggui Kong,E-mail address:kongxg@mail.buct.edu.cn
Supported by:
Fangqi Mao, Peipei Hao, Yuquan Zhu, Xianggui Kong, Xue Duan
通讯作者:
Xianggui Kong,E-mail address:kongxg@mail.buct.edu.cn
基金资助:
Fangqi Mao, Peipei Hao, Yuquan Zhu, Xianggui Kong, Xue Duan. Layered double hydroxides: Scale production and application in soil remediation as super-stable mineralizer[J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 42-48.
Fangqi Mao, Peipei Hao, Yuquan Zhu, Xianggui Kong, Xue Duan. Layered double hydroxides: Scale production and application in soil remediation as super-stable mineralizer[J]. 中国化学工程学报, 2022, 41(1): 42-48.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.09.023
[1] D.R. Montgomery, Soil erosion and agricultural sustainability, Proc. Natl. Acad. Sci. USA 104(33) (2007) 13268–13272. [2] E.S. Cassidy, P.C. West, J.S. Gerber, J.A. Foley, Redefining agricultural yields: From tonnes to people nourished per hectare, Environ. Res. Lett. 8(3) (2013) 034015. [3] D.Y. Hou, D. O’Connor, A.D. Igalavithana, D.S. Alessi, J. Luo, D.C.W. Tsang, D.L. Sparks, Y. Yamauchi, J. Rinklebe, Y.S. Ok, Metal contamination and bioremediation of agricultural soils for food safety and sustainability, Nat. Rev. Earth Environ. 1(7) (2020) 366–381. [4] F.J. Zhao, Y.B. Ma, Y.G. Zhu, Z. Tang, S.P. McGrath, Soil contamination in China: Current status and mitigation strategies, Environ. Sci. Technol. 49(2) (2015) 750–759. [5] L.W. Liu, W. Li, W.P. Song, M.X. Guo, Remediation techniques for heavy metalcontaminated soils: Principles and applicability, Sci. Total Environ. 633(2018) 206–219. [6] S. Ashraf, Q. Ali, Z.A. Zahir, S. Ashraf, H.N. Asghar, Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils, Ecotoxicol. Environ. Saf. 174(2019) 714–727. [7] Y. Wang, A. Li, C. Cui, Remediation of heavy metal-contaminated soils by electrokinetic technology: Mechanisms and applicability, Chemosphere 265(2021) 129071. [8] Y.Y. Huang, C.T. He, C. Shen, J.J. Guo, S. Mubeen, J.G. Yuan, Z.Y. Yang, Toxicity of cadmium and its health risks from leafy vegetable consumption, Food Funct. 8(4) (2017) 1373–1401. [9] Ministry of Environmental Protection, China national soil contamination survey, report,CWR (2014). [10] Y.Y. Gong, D.Y. Zhao, Q.L. Wang, An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade, Water Res. 147(2018) 440–460. [11] D. Tilman, C. Balzer, J. Hill, B.L. Befort, Global food demand and the sustainable intensification of agriculture, Proc. Natl. Acad. Sci. USA 108(50) (2011) 20260– 20264. [12] A. Mahar, P. Wang, A. Ali, M.K. Awasthi, A.H. Lahori, Q. Wang, R.H. Li, Z.Q. Zhang, Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: a review, Ecotoxicol. Environ. Saf. 126(2016) 111–121. [13] H.D. Zhao, L.Y. Du, Y. Wu, X.N. Wu, W. Han, Numerical assessment of the passivator effectiveness for Cd-contaminated soil remediation, Sci. Total Environ. 779(2021) 146485. [14] Y.N. Zhang, Y.J. Zhang, O.U. Akakuru, X.W. Xu, A.G. Wu, Research progress and mechanism of nanomaterials-mediated in situ remediation of cadmiumcontaminated soil: a critical review, J. Environ. Sci. (China) 104(2021) 351–364. [15] X.Q. Zhai, Z.W. Li, B. Huang, N.L. Luo, M. Huang, Q. Zhang, G.M. Zeng, Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization, Sci. Total Environ. 635(2018) 92–99. [16] Y.F. Chen, D.X. Liu, J.H. Ma, B.Y. Jin, J.B. Peng, X.L. He, Assessing the influence of immobilization remediation of heavy metal contaminated farmland on the physical properties of soil, Sci. Total Environ. 781(2021) 146773. [17] G.B. Wang, Q.Q. Zhang, W.C. Du, R.Z. Lin, J.H. Li, F.X. Ai, Y. Yin, R. Ji, X.R. Wang, H.Y. Guo, In-situ immobilization of cadmium-polluted upland soil: A ten-year field study, Ecotoxicol. Environ. Saf. 207(2021) 111275. [18] J.M. Novak, J.A. Ippolito, T.F. Ducey, D.W. Watts, K.A. Spokas, K.M. Trippe, G.C. Sigua, M.G. Johnson, Remediation of an acidic mine spoil: Miscanthus biochar and lime amendment affects metal availability, plant growth, and soil enzyme activity, Chemosphere 205(2018) 709–718. [19] Y. Qian, C. Qin, M. Chen, S. Lin, Nanotechnology in soil remediationapplications vs. implications, Ecotoxicol. Environ. Saf. 201(2020) 110815. [20] S. Bolisetty, M. Peydayesh, R. Mezzenga, Sustainable technologies for water purification from heavy metals: review and analysis, Chem. Soc. Rev. 48(2) (2019) 463–487. [21] Y.Q. Guo, X.Q. Li, L. Liang, Z. Lin, X.T. Su, W.C. Zhang, Immobilization of cadmium in contaminated soils using sulfidated nanoscale zero-valent iron: Effectiveness and remediation mechanism, J. Hazard. Mater. 420(2021) 126605. [22] X.B. Hou, Y.C. Li, Y.F. Pan, Y.C. Jin, H.N. Xiao, Controlled release of agrochemicals and heavy metal ion capture dual-functional redoxresponsive hydrogel for soil remediation, Chem. Commun. (Camb) 54(97) (2018) 13714–13717. [23] V. Rives, M. Angeles Ulibarri, Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates, Coord. Chem. Rev. 181(1) (1999) 61–120. [24] X. Duan, D.G. Evans, Layered Double Hydroxides, Springer-Verlag, Berlin/ Heidelberg, 2006. [25] D.G. Evans, X. Duan, Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine, Chem. Commun. (Camb) 5(2006) 485–496. [26] G.L. Fan, F. Li, D.G. Evans, X. Duan, Catalytic applications of layered double hydroxides: recent advances and perspectives, Chem. Soc. Rev. 43(20) (2014) 7040–7066. [27] C. Taviot-Guého, V. Prévot, C. Forano, G. Renaudin, C. Mousty, F. Leroux, Tailoring hybrid layered double hydroxides for the development of innovative applications, Adv. Funct. Mater. 28(27) (2018) 1703868. [28] H.M. Liu, X.J. Zhao, Y.Q. Zhu, H. Yan, DFT study on MgAl-layered double hydroxides with different interlayer anions: structure, anion exchange, hostguest interaction and basic sites, Phys. Chem. Chem. Phys. 22(4) (2020) 2521– 2529. [29] J. Wang, Z.Y. Lei, H. Qin, L.H. Zhang, F. Li, Structure and catalytic property of Li– Al metal oxides from layered double hydroxide precursors prepared via a facile solution route, Ind. Eng. Chem. Res. 50(12) (2011) 7120–7128. [30] S.M. Xu, Q.C. Zhu, J. Long, H.H. Wang, X.F. Xie, K.X. Wang, J.S. Chen, Lowoverpotential Li-O2 Batteries based on TFSI intercalated Co-Ti layered double oxides, Adv. Funct. Mater. 26(9) (2016) 1365–1374. [31] R.S. Li, Y.H. Wang, W. Li, S.Y. Zhou, P.F. Tian, H.W. Gao, X.Y. Liu, J.B. Zang, Ternary NiFeZr layered double hydroxides: A highly efficient catalyst for the oxygen evolution reaction, Chem. Commun. 55(89) (2019) 13370–13373. [32] Z.Z. Xie, Y. Zou, L.J. Deng, J. Jiang, Self-supporting Ni-M (M = Mo, Ge, Sn) alloy nanosheets via topotactic transformation of oxometallate intercalated layered nickel hydroxide salts: synthesis and application for electrocatalytic hydrogen evolution reaction, Adv. Mater. Interfaces 7(6) (2020) 1901949. [33] H.J. Han, J.X. Li, H.Y. Wang, F. Xue, Y.G. Chen, Y.N. Zhang, Y.Z. Wang, M. Zhang, Catalytic depolymerization of calcium lignosulfonate by NiMgFeOx derived from sub-micron sized NiMgFe hydrotalcite prepared by introducing hydroxyl compounds, Chin. J. Chem. Eng. 27(8) (2019) 1933–1938. [34] A. Khan, R.A. Senthil, J.Q. Pan, Y.Z. Sun, A facile preparation of 3D flowershaped Ni/Al-LDHs covered by b-Ni(OH)2 nanoplates as superior material for high power application, Chin. J. Chem. Eng. 27(10) (2019) 2526–2534. [35] S.L. Ma, L. Huang, L.J. Ma, Y. Shim, S.M. Islam, P.L. Wang, L.D. Zhao, S.C. Wang, G.B. Sun, X.J. Yang, M.G. Kanatzidis, Efficient uranium capture by polysulfide/ layered double hydroxide composites, J. Am. Chem. Soc. 137(10) (2015) 3670– 3677. [36] J. Hu, X. Tang, Q. Dai, Z. Liu, H. Zhang, A. Zheng, Z. Yuan, X. Li, Layered double hydroxide membrane with high hydroxide conductivity and ion selectivity for energy storage device, Nat. Commun. 12(1) (2021) 3409. [37] L. Hui, Y.R. Xue, B.L. Huang, H.D. Yu, C. Zhang, D.Y. Zhang, D.Z. Jia, Y.J. Zhao, Y.J. Li, H.B. Liu, Y.L. Li, Overall water splitting by graphdiyne-exfoliated and-sandwiched layered double-hydroxide nanosheet arrays, Nat. Commun. 9(1) (2018) 5309. [38] L. Yan, S. Gonca, G.Y. Zhu, W.J. Zhang, X.F. Chen, Layered double hydroxide nanostructures and nanocomposites for biomedical applications, J. Mater. Chem. B 7(37) (2019) 5583–5601. [39] D.J. Zhou, P.S. Li, X. Lin, A. McKinley, Y. Kuang, W. Liu, W.F. Lin, X.M. Sun, X. Duan, Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly, Chem. Soc. Rev. 50(15) (2021) 8790–8817. [40] M.W. Laipan, J.F. Yu, R.L. Zhu, J.X. Zhu, A.T. Smith, H.P. He, D. O’Hare, L.Y. Sun, Functionalized layered double hydroxides for innovative applications, Mater. Horiz. 7(3) (2020) 715–745. [41] X.J. Li, D.F. Du, Y. Zhang, W. Xing, Q.Z. Xue, Z.F. Yan, Layered double hydroxides toward high-performance supercapacitors, J. Mater. Chem. A 5(30) (2017) 15460–15485. [42] X.G. Kong, R.X. Ge, T. Liu, S.M. Xu, P.P. Hao, X.J. Zhao, Z.H. Li, X.D. Lei, H.H. Duan, Super-stable mineralization of cadmium by calcium-aluminum layered double hydroxide and its large-scale application in agriculture soil remediation, Chem. Eng. J. 407(2021) 127178. [43] Y. Zhao, F. Li, R. Zhang, D.G. Evans, X. Duan, Preparation of layered doublehydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps, Chem. Mater. 14(10) (2002) 4286–4291. [44] D.M. Roy, R. Roy, E.F. Osborn, The system MgO-Al2O3-H2O and influence of carbonate and nitrate ions on the phase equilibria, Am. J. Sci. 251(5) (1953) 337–361. [45] Z. Lv, Synthesis of layered double hydroxides using an atom-economic reaction and relational kinetic study Ph. D. Thesis, Beijing University of Chemical Technology, China, 2009. [46] F.Q. Mao, P.P. Hao, X.G. Kong, X.D. Lei, X. Duan, Layered double hydroxides as amendment for remediation of heavy metal ions in water and soil, Sci. Sin.-Chim 51(5) (2021) 493–508. [47] J.Z. Zhou, W.K. Shu, Y. Gao, Z.B. Cao, J. Zhang, H. Hou, J. Zhao, X.P. Chen, Y. Pan, G.R. Qian, Enhanced arsenite immobilization via ternary layered double hydroxides and application to paddy soil remediation, RSC Adv. 7(33) (2017) 20320–20326. [48] S. Bagherifam, S. Komarneni, A. Lakzian, A. Fotovat, R. Khorasani, W.Y. Huang, J. F. Ma, Y.J. Wang, Evaluation of Zn-Al-SO4 layered double hydroxide for the removal of arsenite and arsenate from a simulated soil solution: Isotherms and kinetics, Appl. Clay Sci. 95(2014) 119–125. [49] S. Xu, L.P. Zhang, J.W. Zhao, J. Cheng, Q.Q. Yu, S.W. Zhang, J.L. Zhao, X.H. Qiu, Remediation of chromium-contaminated soil using delaminated layered double hydroxides with different divalent metals, Chemosphere 254(2020) 126879. [50] K.H. Goh, T.T. Lim, Z.L. Dong, Application of layered double hydroxides for removal of oxyanions: a review, Water Res. 42(6–7) (2008) 1343–1368. [51] B. Hudcová, M. Vítková, P. Ouředníček, M. Komárek, Stability and stabilizing efficiency of Mg-Fe layered double hydroxides and mixed oxides in aqueous solutions and soils with elevated As(V), Pb(II) and Zn(II) contents, Sci. Total Environ. 648(2019) 1511–1519. [52] S.F. Zhao, Z.S. Li, H.Y. Wang, H.H. Huang, C.F. Xia, D.R. Liang, J.S. Yang, Q. Zhang, Z.L. Meng, Effective removal and expedient recovery of As(V) and Cr(VI) from soil by layered double hydroxides coated waste textile, Sep. Purif. Technol. 263(2021) 118419. [53] X.F. Liang, W.G. Hou, Y.M. Xu, G.H. Sun, L. Wang, Y. Sun, X. Qin, Sorption of lead ion by layered double hydroxide intercalated with diethylenetriaminepentaacetic acid, Colloids Surf. A: Physicochem. Eng. Aspects 366(1–3) (2010) 50–57. [54] H. Hatami, A. Fotovat, A. Halajnia, Comparison of adsorption and desorption of phosphate on synthesized Zn-Al LDH by two methods in a simulated soil solution, Appl. Clay Sci. 152(2018) 333–341. [55] D. Zhang, X.Y. Liu, H.T. Zhao, L. Yang, T. Lü, M.Q. Jin, Application of hydrotalcite in soil immobilization of iodate (IO3), RSC Adv. 8(38) (2018) 21084–21091. [56] X.J. Zhao, Y.Q. Zhu, S.M. Xu, H.M. Liu, P. Yin, Y.L. Feng, H. Yan, Anion exchange behavior of MIIAl layered double hydroxides: a molecular dynamics and DFT study, Phys. Chem. Chem. Phys. 22(35) (2020) 19758–19768. [57] J.W. Boclair, P.S. Braterman, Layered double hydroxide stability. 1. Relative stabilities of layered double hydroxides and their simple counterparts, Chem. Mater. 11(2) (1999) 298–302. [58] M. Jobbágy, A.E. Regazzoni, Dissolution of nano-size Mg-Al-Cl hydrotalcite in aqueous media, Appl. Clay Sci. 51(3) (2011) 366–369. |
[1] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 200-209. |
[2] | Iltaf Khan, Chunjuan Wang, Shoaib Khan, Jinyin Chen, Aftab Khan, Sayyar Ali Shah, Aihua Yuan, Sohail Khan, Mehwish K. Butt, Humaira Asghar. Bio-capped and green synthesis of ZnO/g-C3N4 nanocomposites and its improved antibiotic and photocatalytic activities: An exceptional approach towards environmental remediation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 215-224. |
[3] | Qilong Ge, Qi Tian, Sufang Wang, Fang Zhu. Synergistic effects of phosphoric acid modified hydrochar and coal gangue-based zeolite on bioavailability and accumulation of cadmium and lead in contaminated soil [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 150-160. |
[4] | Ke Yang, Shan Zhong, Hairong Yue, Siyang Tang, Kui Ma, Changjun Liu, Kai Qiao, Bin Liang. Application of pulsed chemical vapor deposition on the SiO2-coated TiO2 production within a rotary reactor at room temperature [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 22-31. |
[5] | Qunhong Liu, Jiangtao Yang, Hongwei Zhang, Hongming Sun, Shuzheng Wu, Bingqing Ge, Rong Wang, Pei Yuan. Tuning the properties of Ni-based catalyst via La incorporation for efficient hydrogenation of petroleum resin [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 41-50. |
[6] | Lanting Ke, Xiaobin Liu, Bingqing Du, Yuanpeng Wang, Yanmei Zheng, Qingbiao Li. Component analysis and risk assessment of biogas slurry from biogas plants [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 182-191. |
[7] | Iman Farirzadeh, Majid Riahi Samani, Davood Toghraie. Lead removal from aqueous medium using fruit peels and polyaniline composites in aqueous and non-aqueous solvents in the presence of polyethylene glycol [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 253-259. |
[8] | Huina Wang, Xiaoxia Duan, Xin Feng, Zai-Sha Mao, Chao Yang. Effect of impeller type and scale-up on spatial distribution of shear rate in a stirred tank [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 351-363. |
[9] | Tao Jiang, Fei Xiao, Yujun Zhao, Shengping Wang, Xinbin Ma. High-temperature CO2 sorbents with citrate and stearate intercalated Ca—Al hydrotalcite-like as precursor [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 177-184. |
[10] | Fenghongkang Pan, Yimeng Wang, Kaiqing Zhao, Jun Hu, Honglai Liu, Ying Hu. Photocatalytic degradation of tetracycline hydrochloride with visible light-responsive bismuth tungstate/conjugated microporous polymer [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 488-496. |
[11] | Patsakol Prayoonpunratn, Trin Jedsukontorn, Mali Hunsom. Photocatalytic activity of metal nanoparticle-decorated titanium dioxide for simultaneous H2 production and biodiesel wastewater remediation [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 86-100. |
[12] | Zhiying Guo, Liping Ma, Quxiu Dai, Xinbo Yang, Ran Ao, Jie Yang, Jing Yang, Wengang Li. Modified corn-core powder for enhancing sludge dewaterability: Synthesis, characterization and sludge dewatering performance [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 368-377. |
[13] | Shuren Yan, Peng Xiao, Ding Zhu, Hai Li, Guangjin Chen, Bei Liu. A large-scale experimental study on CO2 capture utilizing slurry-based ab-adsorption approach [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 56-66. |
[14] | Jianye Xia, Guan Wang, Meng Fan, Min Chen, Zeyu Wang, Yingping Zhuang. Understanding the scale-up of fermentation processes from the viewpoint of the flow field in bioreactors and the physiological response of strains [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 178-184. |
[15] | Giorgio Besagni. The effect of operating and design parameter on bubble column performance: The LOPROX case study [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 48-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||