[1] Y.J. Shi, H. Shu, Y.H. Zhang, H.M. Fan, Y.P. Zhang, L.J. Yang, Formation and decomposition of NH4HSO4 during selective catalytic reduction of NO with NH3 over V2O5-WO3/TiO2 catalysts, Fuel Process. Technol. 150 (2016) 141-147 [2] I.H. Choi, G. Moon, J.Y. Lee, R.K. Jyothi, Alkali fusion using sodium carbonate for extraction of vanadium and tungsten for the preparation of synthetic sodium titanate from spent SCR catalyst, Sci Rep 9 (1) (2019) 12316 [3] I.H. Choi, H.R. Kim, G. Moon, R.K. Jyothi, J.Y. Lee, Spent V2O5-WO3/TiO2 catalyst processing for valuable metals by soda roasting-water leaching, Hydrometallurgy 175 (2018) 292-299 [4] M. Argyle, C. Bartholomew, Heterogeneous catalyst deactivation and regeneration:A review, Catalysts 5 (1) (2015) 145-269 [5] X. Zhao, X. Cheng, J. Hou, Development report on desulfurization and denitration industry in 2017, China Eevironmental Prot. Ind. 7 (2018) 10-24 [6] I.H. Choi, G. Moon, J.Y. Lee, R.K. Jyothi, Hydrometallurgical processing of spent selective catalytic reduction (SCR) catalyst for recovery of tungsten, Hydrometallurgy 178 (2018) 137-145 [7] I.H. Choi, G. Moon, J.Y. Lee, R.K. Jyothi, Extraction of tungsten and vanadium from spent selective catalytic reduction catalyst for stationary application by pressure leaching process, J. Clean. Prod. 197 (2018) 163-169 [8] X. Shang, G. Hu, C. He, J. Zhao, F. Zhang, Y. Xu, Regeneration of full-scale commercial honeycomb monolith catalyst, J. Ind. Eng. Chem. 18 (2012) 513-519. https://doi.org/10.1016/j.jiec.2011.11.070 [9] Y.D. Xue, Y. Zhang, Y. Zhang, S.L. Zheng, Y. Zhang, W. Jin, Electrochemical detoxification and recovery of spent SCR catalyst by in situ generated reactive oxygen species in alkaline media, Chem. Eng. J. 325 (2017) 544-553 [10] M. Li, B. Liu, X.R. Wang, X.B. Yu, S.L. Zheng, H. Du, D. Dreisinger, Y. Zhang, A promising approach to recover a spent SCR catalyst:Deactivation by arsenic and alkaline metals and catalyst regeneration, Chem. Eng. J. 342 (2018) 1-8 [11] H.I. Kim, G. Moon, I. Choi, J.Y. Lee, R.K. Jyothi, Hydrometallurgical process development for the extraction, separation and recovery of vanadium from spent desulfurization catalyst bio-leach liquors, J. Clean. Prod. 187 (2018) 449-458 [12] Q.J. Zhang, Y.F. Wu, T.Y. Zuo, Titanium extraction from spent selective catalytic reduction catalysts in a NaOH molten-salt system:Thermodynamic, experimental, and kinetic studies, Metall. Mater. Trans. B 50 (1) (2019) 471-479 [13] B.T. Ma, Z.F. Qiu, J. Yang, C.H. Qin, J.L. Fan, A.S. Wei, Y.J. Li, Recovery of nano-TiO2 from spent SCR catalyst by sulfuric acid dissolution and direct precipitation, Waste Biomass Valorization 10 (10) (2019) 3037-3044 [14] H. Zhou, X.T. Guo, M.X. Zhou, Influence of different additives on harmless melting treatment of waste SCR catalysts, J. Chin. Soc. Power Eng. (2017) 37(12)999-1006 [15] L.L. Wang, S. Su, M.X. Qing, Z.J. Dai, Z.J. Sun, L.J. Liu, Y. Wang, S. Hu, K. Xu, J. Xiang, Melting solidification and leaching behaviors of V/As during co-combustion of the spent SCR catalyst with coal, Fuel 252 (2019) 164-171 [16] Ministry of Ecology and Environment of the People's Republic of China, Letter on Soliciting Opinions on 20 National Pollutant Discharge Standards (Draft for Comment) which including Emission Standard of Air Pollutants for Sintering and Pelletizing of Iron and Steel Industry (2017)[2020-7-22]. http://www.mee.gov.cn/gkml/hbb/bgth/201706/W020170615549538261241.pdf. [17] J.P. Zhao, C.E. Loo, R.D. Dukino, Modelling fuel combustion in iron ore sintering, Combust. Flame 162 (4) (2015) 1019-1034 [18] J.P. Zhao, C.E. Loo, R.D. Dukino, Modelling fuel combustion in iron ore sintering, Combust. Flame 162 (4) (2015) 1019-1034 [19] H. Zhou, Z.H. Liu, M. Cheng, M.X. Zhou, R.P. Liu, Influence of coke combustion on NOx emission during iron ore sintering, Energy Fuels 29 (2) (2015) 974-984 [20] H. Zhou, P.N. Ma, Z.Y. Lai, Y.H. Zuo, Y.J. Xing, H. Shi, K.F. Cen, Harmless treatment of waste selective catalytic reduction catalysts during iron ore sintering process, J. Clean. Prod. 275 (2020) 122954 [21] C.E. Loo, J.C.M. Leaney, Characterizing the contribution of the high-temperature zone to iron ore sinter bed permeability, T. I. Min. Metall. C. 111 (2002) 11-17 [22] H. Zhou, M. Zhou, P. Ma, M. Cheng, Experimental investigation on the flame front resistance of gas channel growth with melt formation in iron ore sinter beds, Proc. Combust. Inst. 37 (2019) 4607-4615. https://doi.org/10.1016/j.proci.2018.09.027 [23] H. Zhou, M. Zhou, Z. Liu, M. Cheng, K. Qiu, K. Cen, Factors controlling high-Temperature zone resistance to airflow during iron ore sintering, ISIJ Int. 55 (2015) 2556-2565. https://doi.org/10.2355/isijinternational.ISIJINT-2015-311 [24] H. Zhou, M.X. Zhou, M. Cheng, W.S. Guo, K.F. Cen, Experimental study and X-ray microtomography based CFD simulation for the characterization of pressure drop in sinter bed, Appl. Therm. Eng. 112 (2017) 811-819 [25] H. Zhou, Z.H. Liu, M. Cheng, R.P. Liu, K.F. Cen, Effect of flame-front speed on the pisolite-ore sintering process, Appl. Therm. Eng. 75 (2015) 307-314 [26] C.E. Loo, W. Leung, Factors influencing the bonding phase structure of iron ore sinters, ISIJ Int. 43 (2003) 1393-1402. https://doi.org/10.2355/isijinternational.43.1393 [27] D.M. Liu, G. Evans, C.E. Loo, Iron ore sinter structure development under realistic thermal conditions, Chem. Eng. Res. Des. 130 (2018) 129-137 [28] M. Zhou, S.T. Yang, T. Jiang, X.X. Xue, Influence of MgO in form of magnesite on properties and mineralogy of high chromium, vanadium, titanium magnetite sinters, Ironmak. Steelmak. 42 (3) (2015) 217-225 |