1 Van Oijen, J.A., Bastiaans, R.J.M., Groot, G.R.A., De Goey, L.P.H., “Direct numerical simulations of premixed turbulent flames with reduced chemistry:Validation and flamelet analysis”, Flow, Turbulence and Combustion, 75 (1-4), 67-84 (2005). 2 Modest, M.F., “Multiscale modeling of turbulence, radiation, and combustion interactions in turbulent flames”, Int. J Multiscale Combustion, (1), 85-105 (2005). 3 Wang, Y., Trouve, A., “Direct numerical simulation of nonpremixed flame-wall interactions”, Combustion and Flame, 144 (3), 461-475 (2006). 4 Domingo, P., Vervisch, L., Payet, S., Hauguel, R., “DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry”, Combustion and Flame, 143 (4), 566-586 (2005). 5 Swaminathan, N., Bray, K.N.C., “Effect of dilatation on scalar dissipation in turbulent premixed flames”, Combustion and Flame, 143 (4), 549-565 (2005). 6 Hawkes, E.R., Chen, J.H., “Comparison of direct numerical simulation of lean premixed methane-air flames with strained laminar flame calculations”, Combustion and Flame, 144 (1/2), 112-125 (2006). 7 Yoo, C.S., Wang, Y., Trouve, A., Im, H.G., “Characteristic boundary conditions for direct simulations of turbulent counterflow flames”, Combustion, Theory and Modeling, 9 (4), 617-646 (2005). 8 Domingo, P., Vervisch, L., Reveillon, J., “DNS analysis of partially premixed combustion in spray and gaseous turbulent flame-bases stabilized in hot air”, Combustion and Flame, 140 (3), 172-195 (2005). 9 Freitag, M., Klein, M., “Direct numerical simulation of a recirculating, swirling flow”, Flow, Turbulence and Combustion, 75 (1-4), 51-66 (2005). 10 Sripakagorn, P., Mitarai, S., Kosaly, G., Pitsch, H., “Extinction and reignition in a diffusion flame:A direct numerical simulation study”, Journal of Fluid Mechanics, 518, 231-259 (2004). 11 Zhang, S.W., Rutland, C.J., “Premixed flame effects on turbulence and pressure-related terms”, Combustion and Flame, 102, 447-461 (1995). 12 Luo, K.H., “Combustion effects on turbulence in a partially premixed supersonic diffusion flame”, Combustion and Flame, 119, 417-435 (1999). 13 Overholt, M.R., Pope, S.B., “Direct numerical simulation of a statistically stationary, turbulent reacting flow”, Combustion Theory and Modeling, 3, 371-408 (1999). 14 Bedat, B., Egolfopoulos, F.N., Poinsot, T., “Direct numerical simulation of heat release and NO formation in turbulent non-premixed flames”, Combustion and Flame, 119, 69-83 (1999). 15 Sreedhara, S., Huh, K.Y., “Assessment of closure schemes in second-order conditional moment closure against DNS with extinction and ignition”, Combustion and Flame, 143, 386-401 (2005). 16 Hawkes, E.R., Chen, J.H., “Direct numerical simulation of hydrogen-enriched lean premixed methane-air flames”, Combustion and Flame, 138, 242-258 (2004). 17 Chong, C.M., Heinz, P., “Higher-order conditional moment closure modeling of local extinction and reignition in turbulent combustion”, Combustion Theory and Modeling, 6, 425-437 (2002). 18 Zhou, L.X., Qiao, L., Zhang, J., “A unified second-order moment turbulence-chemistry model for simulating turbulent combustion and NOx formation”, Fuel, 81, 1703-1709 (2002). 19 Zhou, L.X., Wang, F., Zhang, J., “Simulation of swirling combustion and NO formation using a USM turbulence-chemistry model”, Fuel, 82, 1579-1586 (2003). 20 Xu, C.X., Toonder, J.M.J., Nieuwstadt, F.T.M., Zhang, Z., “Origin of high kurtosis levels in the viscous sublayer. Direct numerical simulation and experiments”, Phys. Fluids, 8 (7), 1938-1944 (1996). |