Chinese Journal of Chemical Engineering ›› 2022, Vol. 44 ›› Issue (4): 87-93.DOI: 10.1016/j.cjche.2021.04.038
Previous Articles Next Articles
Chunhua Zhang1,2, Zhengyan Qu1, Hong Jiang1, Rizhi Chen1, Weihong Xing1
Received:
2021-02-01
Revised:
2021-04-11
Online:
2022-06-18
Published:
2022-04-28
Contact:
Rizhi Chen,E-mail:rizhichen@njtech.edu.cn;Weihong Xing,E-mail:xingwh@njtech.edu.cn
Supported by:
Chunhua Zhang1,2, Zhengyan Qu1, Hong Jiang1, Rizhi Chen1, Weihong Xing1
通讯作者:
Rizhi Chen,E-mail:rizhichen@njtech.edu.cn;Weihong Xing,E-mail:xingwh@njtech.edu.cn
基金资助:
Chunhua Zhang, Zhengyan Qu, Hong Jiang, Rizhi Chen, Weihong Xing. Nb2O5 promoted Pd/AC catalyst for selective phenol hydrogenation to cyclohexanone[J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 87-93.
Chunhua Zhang, Zhengyan Qu, Hong Jiang, Rizhi Chen, Weihong Xing. Nb2O5 promoted Pd/AC catalyst for selective phenol hydrogenation to cyclohexanone[J]. 中国化学工程学报, 2022, 44(4): 87-93.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.04.038
[1] Y.J. Zhang, J.C. Zhou, J.Q. Si, Synergistic catalysis of nano-Pd and nano rare-earth oxide/AC:Complex nanostructured catalysts fabricated by a photochemical route for selective hydrogenation of phenol, RSC Adv. 7 (86) (2017) 54779-54788.https://doi.org/10.1039/c7ra09917g [2] R.D. Patil, Y. Sasson, Selective transfer hydrogenation of phenol to cyclohexanone on supported palladium catalyst using potassium formate as hydrogen source under open atmosphere, Appl. Catal. A:Gen. 499 (2015) 227-231.http://dx.doi.org/10.1016/j.apcata.2015.04.009 [3] X.F. Huang, G.P. Yuan, G. Huang, S.J. Wei, Study on maximizing catalytic performance of cobalt(II) 5, 10, 15, 20-tetrakis(4-pyridyl)porphyrin for cyclohexane oxidation, J. Ind. Eng. Chem. 77 (2019) 135-145.http://dx.doi.org/10.1016/j.jiec.2019.04.028 [4] G. Bellussi, C. Perego, Industrial catalytic aspects of the synthesis of monomers for nylon production, CATTECH 4 (1) (1999) 4-16.http://dx.doi.org/10.1023/A:1011905009608 [5] X. Xu, H.R. Li, Y. Wang, Selective hydrogenation of phenol to cyclohexanone in water over Pd@N-doped carbon derived from ionic-liquid precursors, ChemCatChem 6 (12) (2014) 3328-3332.https://doi.org/10.1002/cctc.201402561 [6] Y.Y. Zhu, G.Q. Yu, J. Yang, M. Yuan, D. Xu, Z.P. Dong, Biowaste soybean curd residue-derived Pd/nitrogen-doped porous carbon with excellent catalytic performance for phenol hydrogenation, J Colloid Interface Sci 533 (2019) 259-267.https://www.ncbi.nlm.nih.gov/pubmed/30170277/ [7] Y. Wang, J. Yao, H.R. Li, D.S. Su, M. Antonietti, Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media, J Am Chem Soc 133 (8) (2011) 2362-2365.https://www.ncbi.nlm.nih.gov/pubmed/21294506/ [8] T.Z. Liu, H. Zhou, B.B. Han, Y.B. Gu, S.Q. Li, J. Zheng, X. Zhong, G.L. Zhuang, J.G. Wang, Enhanced selectivity of phenol hydrogenation in low-pressure CO2 over supported Pd catalysts, ACS Sustain Chem. Eng. 5 (12) (2017) 11628-11636 [9] S.W. Liu, J. Han, Q. Wu, B. Bian, L. Li, S.T. Yu, J. Song, C. Zhang, A.J. Ragauskas, Hydrogenation of phenol to cyclohexanone over bifunctional Pd/C-heteropoly acid catalyst in the liquid phase, Catal. Lett. 149 (9) (2019) 2383-2389.http://dx.doi.org/10.1007/s10562-019-02852-1 [10] H. Zhou, B.B. Han, T.Z. Liu, X. Zhong, G.L. Zhuang, J.G. Wang, Selective phenol hydrogenation to cyclohexanone over alkali-metal-promoted Pd/TiO2 in aqueous media, Green Chem. 19 (15) (2017) 3585-3594 [11] U.R. Pillai, E. Sahle-Demessie, Strontium as an efficient promoter for supported palladium hydrogenation catalysts, Appl. Catal. A:Gen. 281 (1-2) (2005) 31-38.http://dx.doi.org/10.1016/j.apcata.2004.11.009 [12] H. Li, J. Liu, S.H. Xie, M.H. Qiao, W.L. Dai, Y.F. Lu, H.X. Li, Vesicle-assisted assembly of mesoporous Ce-doped Pd nanospheres with a hollow chamber and enhanced catalytic efficiency, Adv. Funct. Mater. 18 (20) (2008) 3235-3241.https://doi.org/10.1002/adfm.200800667 [13] Z.L. Li, J.H. Liu, C.G. Xia, F.W. Li, Nitrogen-functionalized ordered mesoporous carbons as multifunctional supports of ultrasmall Pd nanoparticles for hydrogenation of phenol, ACS Catal. 3 (11) (2013) 2440-2448.http://dx.doi.org/10.1021/cs400506q [14] M. Crespo-Quesada, A. Yarulin, M.S. Jin, Y.N. Xia, L. Kiwi-Minsker, Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals:Which sites are most active and selective?J Am Chem Soc 133 (32) (2011) 12787-12794.https://www.ncbi.nlm.nih.gov/pubmed/21749155/ [15] W.Y. Chen, J. Ji, X. Feng, X.Z. Duan, G. Qian, P. Li, X.G. Zhou, D. Chen, W.K. Yuan, Mechanistic insight into size-dependent activity and durability in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane, J Am Chem Soc 136 (48) (2014) 16736-16739.https://www.ncbi.nlm.nih.gov/pubmed/25405630/ [16] X.Q. Kong, Y.T. Gong, S.J. Mao, Y. Wang, Selective hydrogenation of phenol, ChemNanoMat 4 (5) (2018) 432-450 [17] D.Y. Li, C. Gu, F. Han, Z.X. Zhong, W.H. Xing, Catalytic performance of hybrid Pt@ZnO NRs on carbon fibers for methanol electro-oxidation, Chin. J. Chem. Eng. 25 (12) (2017) 1871-1876.http://dx.doi.org/10.1016/j.cjche.2017.08.013 [18] Y. Shu, H.Y. Long, F. Zhang, H.C. Wang, C. Xu, Catalytic reduction of NOx by biomass-derived activated carbon supported metals, Res. Environ. Sci. (2018) 31(9)1588-1596 [19] C. Shen, W.Q. Zhou, H. Yu, L. Du, Ni nanoparticles supported on carbon as efficient catalysts for steam reforming of toluene (model tar), Chin. J. Chem. Eng. 26 (2) (2018) 322-329.http://dx.doi.org/10.1016/j.cjche.2017.03.028 [20] J. Wang, Z.Z. Wei, S.J. Mao, H.R. Li, Y. Wang, Highly uniform Ru nanoparticles over N-doped carbon:pH and temperature-universal hydrogen release from water reduction, Energy Environ. Sci. 11 (4) (2018) 800-806.https://doi.org/10.1039/c7ee03345a [21] J. Deng, T.Y. Xiong, F. Xu, M.M. Li, C.L. Han, Y.T. Gong, H.Y. Wang, Y. Wang, Inspired by bread leavening:One-pot synthesis of hierarchically porous carbon for supercapacitors, Green Chem. 17 (7) (2015) 4053-4060.https://doi.org/10.1039/c5gc00523j [22] X.B. Bao, Y.T. Gong, Y.Z. Chen, H. Zhang, Z. Wang, S.J. Mao, L. Xie, Z. Jiang, Y. Wang, Carbon vacancy defect-activated Pt cluster for hydrogen generation, J. Mater. Chem. A 7 (25) (2019) 15364-15370.https://doi.org/10.1039/c9ta04010b [23] K.A. Resende, F.B. Noronha, C.E. Hori, Hydrodeoxygenation of phenol over metal supported niobia catalysts, Renew. Energy 149 (2020) 198-207.http://dx.doi.org/10.1016/j.renene.2019.12.061 [24] L.P. Kong, L.L. Zhang, J.L. Gu, L. Gou, L.F. Xie, Y.Y. Wang, L.Y. Dai, Catalytic hydrotreatment of kraft lignin into aromatic alcohols over nickel-rhenium supported on niobium oxide catalyst, Bioresour Technol 299 (2020) 122582.https://www.ncbi.nlm.nih.gov/pubmed/31877480/ [25] C. Hernández Mejía, T.W. van Deelen, K.P. de Jong, Activity enhancement of cobalt catalysts by tuning metal-support interactions, Nat Commun 9 (1) (2018) 4459.https://www.ncbi.nlm.nih.gov/pubmed/30367060/ [26] J.W. Jun, Y.W. Suh, D.J. Suh, Y.K. Lee, Strong metal-support interaction effect of Pt/Nb2O5 catalysts on aqueous phase hydrodeoxygenation of 1, 6-hexanediol, Catal. Today 302 (2018) 108-114.http://dx.doi.org/10.1016/j.cattod.2017.03.026 [27] S.B.T. Tran, H. Choi, S. Oh, J.Y. Park, Influence of support acidity of Pt/Nb2O5 catalysts on selectivity of CO2 hydrogenation, Catal. Lett. 149 (10) (2019) 2823-2835.http://dx.doi.org/10.1007/s10562-019-02822-7 [28] R. Buitrago-Sierra, J.C. Serrano-Ruiz, F. Rodríguez-Reinoso, A. Sepúlveda-Escribano, J.A. Dumesic, Ce promoted Pd-Nb catalysts for γ-valerolactone ring-opening and hydrogenation, Green Chem. 14 (12) (2012) 3318.https://doi.org/10.1039/c2gc36161b [29] F.Y. Ye, D.M. Zhang, T. Xue, Y.M. Wang, Y.J. Guan, Enhanced hydrogenation of ethyl levulinate by Pd-AC doped with Nb2O5, Green Chem. 16 (8) (2014) 3951.https://doi.org/10.1039/c4gc00972j [30] B.T. Liu, H.Q. Wang, Y. Chen, J. Wang, L.L. Peng, L. Li, Pt nanoparticles anchored on Nb2O5 and carbon fibers as an enhanced performance catalyst for methanol oxidation, J. Alloy. Compd. 682 (2016) 584-589.http://dx.doi.org/10.1016/j.jallcom.2016.04.291 [31] Y. Liu, M. Tursun, H.B. Yu, X.P. Wang, Surface property and activity of Pt/Nb2O5-ZrO2 for selective catalytic reduction of NO by H2, Mol. Catal. 464 (2019) 22-28.http://dx.doi.org/10.1016/j.mcat.2018.12.015 [32] H.Z. Liu, T. Jiang, B.X. Han, S.G. Liang, Y.X. Zhou, Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst, Science 326 (5957) (2009) 1250-1252.https://www.ncbi.nlm.nih.gov/pubmed/19965472/ [33] M.M. Li, Y. Li, L. Jia, Y. Wang, Tuning the selectivity of phenol hydrogenation on Pd/C with acid and basic media, Catal. Commun. 103 (2018) 88-91.http://dx.doi.org/10.1016/j.catcom.2017.09.028 [34] J.X. Zhang, C.H. Zhang, H. Jiang, Y.F. Liu, R.Z. Chen, Highly efficient phenol hydrogenation to cyclohexanone over Pd@CN-rGO in aqueous phase, Ind. Eng. Chem. Res. 59 (23) (2020) 10768-10777 [35] Y.J. Zhang, J.C. Zhou, K. Li, M. Lv, Synergistic catalytic hydrogenation of phenol over hybrid nano-structure Pd catalyst, Mol. Catal. 478 (2019) 110567.http://dx.doi.org/10.1016/j.mcat.2019.110567 [36] K.J. Griffith, A.C. Forse, J.M. Griffin, C.P. Grey, High-rate intercalation without nanostructuring in metastable Nb2O5 bronze phases, J Am Chem Soc 138 (28) (2016) 8888-8899.https://www.ncbi.nlm.nih.gov/pubmed/27264849/ [37] M.P.F. Graça, A. Meireles, C. Nico, M.A. Valente, Nb2O5 nanosize powders prepared by Sol-gel-Structure, morphology and dielectric properties, J. Alloy. Compd. 553 (2013) 177-182.http://dx.doi.org/10.1016/j.jallcom.2012.11.128 [38] N. Kumari, K. Gaurav, S.K. Samdarshi, A.S. Bhattacharyya, S. Paul, B. Rajbongshi, K. Mohanty, Dependence of photoactivity of niobium pentoxide (Nb2O5) on crystalline phase and electrokinetic potential of the hydrocolloid, Sol. Energy Mater. Sol. Cells 208 (2020) 110408.http://dx.doi.org/10.1016/j.solmat.2020.110408 [39] A.M. Raba, J. Bautista-Ruíz, M.R. Joya, Synthesis and structural properties of niobium pentoxide powders:A comparative study of the growth process, Mat. Res. 19 (6) (2016) 1381-1387.https://doi.org/10.1590/1980-5373-mr-2015-0733 [40] Z.Y. Li, M.S. Akhtar, D.H. Kwak, O.B. Yang, Improvement in the surface properties of activated carbon via steam pretreatment for high performance supercapacitors, Appl. Surf. Sci. 404 (2017) 88-93.http://dx.doi.org/10.1016/j.apsusc.2017.01.238 [41] J.B. Guan, Y.N. Fang, T. Zhang, L.N. Wang, H. Zhu, M.L. Du, M. Zhang, Kelp-derived activated porous carbon for the detection of heavy metal ions via square wave anodic stripping voltammetry, Electrocatalysis 11 (1) (2020) 59-67.http://dx.doi.org/10.1007/s12678-019-00568-9 [42] H.F. Xiong, M. Nolan, B.H. Shanks, A.K. Datye, Comparison of impregnation and deposition precipitation for the synthesis of hydrothermally stable niobia/carbon, Appl. Catal. A:Gen. 471 (2014) 165-174.http://dx.doi.org/10.1016/j.apcata.2013.11.018 [43] I. Nowak, M. Ziolek, Niobium compounds:Preparation, characterization, and application in heterogeneous catalysis, Chem Rev 99 (12) (1999) 3603-3624.https://www.ncbi.nlm.nih.gov/pubmed/11849031/ [44] Y. Tong, X.F. Lu, W.N. Sun, G.D. Nie, L. Yang, C. Wang, Electrospun polyacrylonitrile nanofibers supported Ag/Pd nanoparticles for hydrogen generation from the hydrolysis of ammonia borane, J. Power Sources 261 (2014) 221-226.http://dx.doi.org/10.1016/j.jpowsour.2014.03.051 [45] J.J. Zhang, T.T. Jiang, Y.L. Mai, X. Wang, J.Z. Chen, B. Liao, Selective catalytic oxidation of sulfides to sulfoxides or sulfones over amorphous Nb2O5/AC catalysts in aqueous phase at room temperature, Catal. Commun. 127 (2019) 10-14.http://dx.doi.org/10.1016/j.catcom.2019.04.013 [46] S. Damyanova, L. Dimitrov, L. Petrov, P. Grange, Effect of niobium on the surface properties of Nb2O5-SiO2-supported Mo catalysts, Appl. Surf. Sci. 214 (1-4) (2003) 68-74 [47] G.X. Yang, J.X. Zhang, H. Jiang, Y.F. Liu, R.Z. Chen, Turning surface properties of Pd/N-doped porous carbon by trace oxygen with enhanced catalytic performance for selective phenol hydrogenation to cyclohexanone, Appl. Catal. A:Gen. 588 (2019) 117306.http://dx.doi.org/10.1016/j.apcata.2019.117306 [48] P. Arunkumar, A.G. Ashish, B. Babu, S. Sarang, A. Suresh, C.H. Sharma, M. Thalakulam, M.M. Shaijumon, Nb2O5/graphene nanocomposites for electrochemical energy storage, RSC Adv. 5 (74) (2015) 59997-60004.https://doi.org/10.1039/c5ra07895d [49] S. Hu, G.X. Yang, H. Jiang, Y.F. Liu, R.Z. Chen, Selective hydrogenation of phenol to cyclohexanone over Pd@CN (N-doped porous carbon):Role of catalyst reduction method, Appl. Surf. Sci. 435 (2018) 649-655.http://dx.doi.org/10.1016/j.apsusc.2017.11.181 [50] S.S. Ding, C.H. Zhang, Y.F. Liu, H. Jiang, W.H. Xing, R.Z. Chen, Pd nanoparticles supported on N-doped porous carbons derived from ZIF-67:Enhanced catalytic performance in phenol hydrogenation, J. Ind. Eng. Chem. 46 (2017) 258-265. |
[1] | Baoyu Liu, Feng Xiong, Jianwen Zhang, Manna Wang, Yi Huang, Yanxiong Fang, Jinxiang Dong. Enhanced ortho-selective t–butylation of phenol over sulfonic acid functionalized mesopore MTW zeolites [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 1-7. |
[2] | Bin Gao, Junwen Chen, Qi Zuo, Hongyan Wang, Wenlin Li. The critical role of Zr in controlling the activity of Pd/Beta on the hydrogenation of phenol to cyclohexanone [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 79-87. |
[3] | Yaoyao Peng, Lei Song, Siru Lu, Ziyu Su, Kui Ma, Siyang Tang, Shan Zhong, Hairong Yue, Bin Liang. Superior resistance to alkali metal potassium of vanadium-based NH3-SCR catalyst promoted by the solid superacid SO42--TiO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 246-256. |
[4] | Lu Lv, Min Zhao, Yanan Liu, Yufei He, Dianqing Li. Fabrication of hydrophobic Pd/Al2O3-phosphoric acid via P-O-Al bond for liquid hydrogenation reaction [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 232-242. |
[5] | Yao Zhong, Cuiying Huang, Lijie Li, Qiang Deng, Jun Wang, Zheling Zeng, Shuguang Deng. Postsynthetic acid modification of amino-tagged metal-organic frameworks: Structure-functionrelationship for catalytic 5-hydroxymethylfurfural synthesis [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 245-252. |
[6] | Juan Xu, Ping Zhu, Islam H. El Azab, Ben Bin Xu, Zhanhu Guo, Ashraf Y. Elnaggar, Gaber A.M. Mersal, Xiangyi Liu, Yunfei Zhi, Zhiping Lin, Hassan Algadi, Shaoyun Shan. An efficient bifunctional Ni-Nb2O5 nanocatalysts for the hydrodeoxygenation of anisole [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 187-197. |
[7] | Jian Jian, Dexing Yang, Peng Liu, Kuiyi You, Weijie Sun, Hu Zhou, Zhengqiu Yuan, Qiuhong Ai, Hean Luo. Solvent-free partial oxidation of cyclohexane to KA oil over hydrotalcite-derived Cu-MgAlO mixed metal oxides [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 269-276. |
[8] | Chunhua Zhang, Guangxin Yang, Hong Jiang, Yefei Liu, Rizhi Chen, Weihong Xing. Phenol hydrogenation to cyclohexanone over palladium nanoparticles loaded on charming activated carbon adjusted by facile heat treatment [J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2600-2606. |
[9] | Yamei Zhao, Yufeng Hu, Jianguang Qi, Weiting Ma. Brønsted-acidic ionic liquids as catalysts for synthesizing trioxane [J]. , 2016, 24(10): 1392-1398. |
[10] | WANG Xunqiu, ZHUANG Xinliang, JIANG Denggao. Measurement and Correlation of Vapor-Liquid Equilibrium of the 1,2-Epoxycyclohexane-Cyclohexanone Binary System at 101.3 kPa [J]. Chin.J.Chem.Eng., 2014, 22(3): 355-359. |
[11] | YUAN Haikuan, LIU Xuru, REN Jie, SHEN Lian . Surface Acidity of Aluminum Phosphate and Its Catalytic Performance in Benzene Alkylation with Long Chain Olefin [J]. Chin.J.Chem.Eng., 2013, 21(6): 627-632. |
[12] | CHEN Jian, ZHAO Xiaoshuang, ZHANG Guangxu, CHEN Bo, CAI Weiquan. Synthesis of ε-Caprolactone by Oxidation of Cyclohexanone with Monoperoxysuccinic Acid [J]. Chin.J.Chem.Eng., 2013, 21(12): 1404-1409. |
[13] | LIU Guoqing, WU Jian, LUO He'an. AmmAmmoximation of Cyclohexanone to Cyclohexanone Oxime Catalyzed by Titanium Silicalite-1 Zeolite in Three-phase System* [J]. Chin.J.Chem.Eng., 2012, 20(5): 889-894. |
[14] | GENG Yanlou, HU Liyan, ZHAO Xinqiang, AN Hualiang, WANG Yanji . Synthesis of 4,4'-MDC in the Presence of Sulfonic Acid-functionalized Ionic Liquids [J]. , 2009, 17(5): 756-760. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||