[1] A.M. Gañán-Calvo,J.M.López-Herrera, M.AHerrada.Review on the physics of electrospray:From electrokinetics to theoperating conditions of single and coaxial Taylor cone-jets, and AC electrospray, Journal of Aerosol Science, 125 (2018), 32-56 [2] Z. Wang, Y. Zhang, R. Li, Q. Wang, J. Wang, An experimental study on drop formation from a capillary tube, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42 (2) (2020), 110 [3] Z. Wang, L. Tian, L. Xia, J. Dong, J. Wang, J. Tu, Experimental Study on Repetition Frequency of Drop/Jet Movement in Electro-Spraying of Deionized Water, Aerosol & Air Quality Research, 18 (2) (2018), 301-313 [4] Z. Wang, L. Xia, L. Tian, J. Wang, S. Zhan, Y. Huo, J. Tu, Natural Periodicity of Electrohydrodynamic Spraying in Ethanol, Journal of Aerosol Science, 117 (2018), 127-138 [5] M. Cloupeau, B. Prunet-Foch, Electrohydrodynamic spraying functioning modes:a critical review, Journal of Aerosol Science, 25 (6) (1994), 1021-1036 [6] S. Maktabi, P.R. Chiarot, Electrohydrodynamic printing of organic polymeric resistors on flat and uneven surfaces, Journal of Applied Physics, 120 (8) (2016), 084903 [7] A. Lee, H. Jin, H.W. Dang, K.H. Choi, K.H. Ahn, Optimization of experimental parameters to determine the jetting regimes in electrohydrodynamic printing, Langmuir, 29 (44) (2013), 13630-13639 [8] T. Lei, Q. Peng, Q. Chen, J. Xiong, F. Zhang, D. Sun, Alignment of electrospun fibers using the whipping instability, Materials Letters, 193 (2017), 248-250 [9] T. Morris, C. Malardier-Jugroot, M. Jugroot, Characterization of electrospray beams for micro-spacecraft electric propulsion applications, Journal of Electrostatics, 71 (5) (2013), 931-938 [10] A. Jaworek, A.T. Sobczyk, Electrospraying route to nanotechnology:An overview, Journal of Electrostatics, 66 (3) (2008), 197-219 [11] Z.W. Jiang, Y.H. Gan, Y.G. Ju, J.L. Liang, Y. Zhou, Experimental study on the electrospray and combustion characteristics of biodiesel-ethanol blends in a meso-scale combustor, Energy, 2019, 179:843-849 [12] Y.H. Gan, H.G. Li, Z.W. Jiang, X.W. Chen, Y.L. Luo, Y. Tong, Y.L. Shi, X. Jiang, An experimental investigation on the electrospray characteristics in a meso-scale system at different modes, Experimental Thermal and Fluid Science, 2019, 106:130-137 [13] Y.H. Gan, Y. Tong, Z.W. Jiang, X.W. Chen, H.G. Li, X. Jiang, Electro-spraying and catalyticcombustion characteristics of ethanol in meso-scale combustors with steel and platinum meshes, Energy Conversion and Management, 2018, 164:410-416 [14] Z. Wang, L. Xia, S. Zhan, Experimental Study on Electrohydrodynamics (EHD) Spraying of Ethanol with Double-capillary, Applied Thermal Engineering, 120 (2017), 474-483 [15] Z. Wang, Q. Wang, Y. Zhang, Y. Jiang, L. Xia, Formation of mono-dispersed droplets with electric periodic dripping regime in electrohydrodynamic (EHD) atomization, Chinese Journal of Chemical Engineering, 28(5) (2020), 1241-1249 [16] Z. Wang, K. Dong, Q. Wang, B. Li, J. Tu, Soluble gas absorption and dispersion inside side-by-side water micro-cylinders containing solid core, International Communications in Heat and Mass Transfer, 116 (2020), 104699 [17] Z. Wang, Y. Zhang, Q. Wang, K. Dong, S. Yang, Y. Jiang, J. Zheng, B. Li, Y. Huo, X. Wang, J. Wang, J. Tu. Dynamics of droplet formation with oscillation of meniscus in electric periodic dripping regime, Experimental Thermal and Fluid Science,121(2021), 110250 [18] Q. Wang, Z. Wang, Y. Jiang, S. Yang, Experimental study of electro-spraying modes of deionized water in atmospheric environment, Experimental and Computational Multiphase Flow, 3 (1) (2021), 38-46 [19] Y. Pan, L. Zeng, Simulationandvalidationofdropletgeneration process for revealingthree design constraints in electrohydrodynamic jet printing. Micromachines,10 (2) (2019), 94 [20] Q. Wang, Z. Wang, S. Yang, B. Li, H. Xu, K. Yu, J. Wang. Experimental study on electrohydrodynamic atomization (EHDA) in stable cone-jet with middle viscous and low conductiveliquid, Experimental Thermal and Fluid Science,121(2020), 110260 [21] Z. Wang, R. Li, L. Tian, L. Xia, S. Zhan, J. Wang, J. Tu, Visualization of periodic emission of drops with micro-dripping mode in electrohydrodynamic (EHD) atomization, Experimental Thermal and Fluid ence, 105 (2019), 307-315 [22] A.M. Gañán-Calvo, J. Dávila, A. Barrero, Current and droplet size in the electrospraying of liquids. Scaling laws, Journal of Aerosol Science, 28 (2) (1997), 249-275 [23] A.M. Gañán-Calvo,On the general scaling theory for electrospraying, Journal of Fluid Mechanics, 507 (2004), 203-212 [24] H. Dastourani, M.R. Jahannama, A. Eslami-Majd, A physical insight into electrospray process in cone-jet mode:Role of operating parameters, International Journal of Heat and Fluid Flow, 70 (2018), 315-335 [25] B.K. Ku, S.S. Kim, Electrospray characteristics of highly viscous liquids, Journal of Aerosol Science, 33 (10) (2002), p. 1361-1378 [26] A.M. Gañán-Calvo, N Rebollo-Muñoz, J.M. Montanero. The minimum or natural rate of flow and droplet size ejected by Taylor cone-jets:physical symmetries and scaling laws, New Journal of Physics, 15(15) (2013), 033035 [27] A.V. Subbotin, A.N. Semenov, Electrohydrodynamics of cone-jet flow at high relative dielectric permittivity, JETP Letters, 102 (12) (2015), 932-937 [28] W.J. Scheideler, C.H. Chen, The minimum flow rate scaling of Taylor cone-jets issued from a nozzle, Applied Physics Letters, 104 (2) (2014), 024103 [29] M. Yu, K.H. Ahn, S.J. Lee, Design optimization of ink in electrohydrodynamic jet printing:Effect of viscoelasticity on the formation of Taylor cone jet, Materials and Design, 89 (2016), 109-115 [30] M.R. Morad, A. Rajabi, M. Razavi, S.R.P. Sereshkeh, A Very Stable High Throughput Taylor Cone-jet in Electrohydrodynamics, Scientific Reports, 6 (2016), 38509 [31] O. Lastow, W. Balachandran, Novel low voltage EHD spray nozzle for atomization of water in the cone jet mode, Journal of Electrostatics, 65 (8) (2007), 490-499 [32] O. Yogi, T. Kawakami, A. Mizuno, Properties of droplet formation made by cone jet using a novel capillary with an external electrode, Journal of Electrostatics, 64 (7-9) (2006), 634-638 [33] W. Yang, H. Duan, C. Li, W. Deng, Crossover of varicose and whippinginstabilities in electrified microjets, Physical. Review. Letters. 112 (5) (2014), 054501 [34] A.K. Ball, R. Das, S.S. Roy, D.R. Kisku, N.C. Murmu, Modeling of EHD inkjet printing performance using soft computing-based approaches, Soft Computing, (2019), 1432-7643 [35] S. Khan, Y.H. Doh, A. Khan, A. Rahman, K.H. Choi, D.S. Kim, Direct patterning and electrospray deposition through EHD for fabrication of printed thin film transistors, Current Applied Physics, 11 (1) (2011), S271-S279 [36] Z. Wang, Q. Wang, B. Li, Y. Zhang, J. Wang, J. Tu, An experimental investigation on cone-jet mode in electrohydrodynamic (EHD) atomization, Experimental Thermal and Fluid Science, 114 (2020), 110054 [37] R.P.A. Hartman, D.J. Brunner, D.M.A. Camelot, J.C.M. Marijnissen, B. Scarlett, Jet break-up in electrohyrodynamic atomization in the cone-jetmode, Journal of Aerosol Science, 31 (1) (2000), 65-95 [38] P. Nemes, I. Marginean, A. Vertes, Spraying mode effect on droplet formation and ion chemistry in electrosprays, Analytical Chemistry, 79 (2007), 3105-3116 [39] G. Riboux, Á.G. MARíN, I.G. Loscertales, A. Barrero, Whipping instability characterization of an electrified visco-capillary jet, Journal of Fluid Mechanics, 671 (2011), 226-253 [40] A. Rajabi, E. Javadi, S.R. Pejman Sereshkeh, M.R. Morad, A. Kebriaee, H. Nasiri, S.A.A. Razavi Haeri, Experimental characterization of an extended electrohydrodynamic cone-jet with a hemispherical nozzle, Physics of Fluids, 30 (11) (2018), 1070-6631 [41] H.H. Xia, A. Ismail, J. Yao, J.P.W. Stark, Scaling laws for transition from varicose to whipping instabilities in electrohydrodynamic jetting, Physical Review Applied, 12 (1) (2019), 014031 [42] M.M. Hohman, M. Shin, G. Rutledge, M.P. Brenner, Electrospinning and electrically forced jets. I. Stability theory, Physics of Fluids, 13 (8) (2001), 2201-2220 [43] A.J. Hijano, I.G. Loscertales, S.E. Ibáñez, F.J. Higuera, Periodic emission of droplets from an oscillating electrified meniscus of a low-viscosity, highly conductive liquid, Physical Review E, 91 (1) (2015), 013011 |