[1] D. Wang, D. Astruc, The golden age of transfer hydrogenation, Chem. Rev. 115 (13) (2015) 6621-6686 [2] J.J. Song, Z.F. Huang, L. Pan, K. Li, X.W. Zhang, L. Wang, J.J. Zou, Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions, Appl. Catal. B Environ. 227 (2018) 386-408 [3] D. Formenti, F. Ferretti, F.K. Scharnagl, M. Beller, Reduction of nitro compounds using 3d-non-noble metal catalysts, Chem. Rev. 119 (4) (2019) 2611-2680 [4] H.S. Ye, H.Y. Zhao, Y.Y. Jiang, H.L. Liu, Z.Y. Hou, Catalytic transfer hydrogenation of the C═O bond in unsaturated aldehydes over Pt nanoparticles embedded in porous UiO-66 nanoparticles, ACS Appl. Nano Mater. 3 (12) (2020) 12260-12268 [5] A. Wolfson, C. Dlugy, Y. Shotland, D. Tavor, Glycerol as solvent and hydrogen donor in transfer hydrogenation-dehydrogenation reactions, Tetrahedron Lett. 50 (43) (2009) 5951-5953 [6] M. Al-Naji, M. Popova, Z. Chen, N. Wilde, R. Gläser, Aqueous-phase hydrogenation of levulinic acid using formic acid as a sustainable reducing agent over Pt catalysts supported on mesoporous zirconia, ACS Sustainable Chem. Eng. 8 (1) (2020) 393-402 [7] W.C. Cheong, W.J. Yang, J. Zhang, Y. Li, D. Zhao, S.J. Liu, K.L. Wu, Q.G. Liu, C. Zhang, D.S. Wang, Q. Peng, C. Chen, Y.D. Li, Isolated iron single-atomic site-catalyzed chemoselective transfer hydrogenation of nitroarenes to arylamines, ACS Appl. Mater. Interfaces 11 (37) (2019) 33819-33824 [8] H. Göksu, S.F. Ho, Ö. Metin, K. Korkmaz, A. Mendoza Garcia, M.S. Gültekin, S.H. Sun, Tandem dehydrogenation of ammonia borane and hydrogenation of nitro/nitrile compounds catalyzed by graphene-supported NiPd alloy nanoparticles, ACS Catal. 4 (6) (2014) 1777-1782 [9] S.J. Tabatabaei Rezaei, H. Khorramabadi, A. Hesami, A. Ramazani, V. Amani, R. Ahmadi, Chemoselective reduction of nitro and nitrile compounds with magnetic carbon nanotubes-supported Pt(II) catalyst under mild conditions, Ind. Eng. Chem. Res. 56 (43) (2017) 12256-12266 [10] T. Weidlich, The influence of copper on halogenation/dehalogenation reactions of aromatic compounds and its role in the destruction of polyhalogenated aromatic contaminants, Catalysts 11 (3) (2021) 378 [11] T. Weidlich, Applicability of nickel-based catalytic systems for hydrodehalogenation of recalcitrant halogenated aromatic compounds, Catalysts 11 (12) (2021) 1465 [12] C.W. Hamilton, R.T. Baker, A. Staubitz, I. Manners, B-N compounds for chemical hydrogenstorage, Chem. Soc. Rev. 38 (1) (2009) 279-293 [13] S. Lau, D. Gasperini, R.L. Webster, Amine-boranes as transfer hydrogenation and hydrogenation reagents:A mechanistic perspective, Angewandte Chemie Int. Ed. 60 (26) (2021) 14272-14294 [14] B. Zeynizadeh, F. Mohammad Aminzadeh, H. Mousavi, Chemoselective reduction of nitroarenes, N-acetylation of arylamines, and one-pot reductive acetylation of nitroarenes using carbon-supported palladium catalytic system in water, Res. Chem. Intermed. 47 (8) (2021) 3289-3312 [15] H. Göksu, Recyclable aluminium oxy-hydroxide supported Pd nanoparticles for selective hydrogenation of nitro compounds via sodium borohydride hydrolysis, New J. Chem. 39 (11) (2015) 8498-8504 [16] Z.N. Hu, Y.J. Ai, L. Liu, J.J. Zhou, G. Zhang, H.Q. Liu, X.Y. Liu, Z.B. Liu, J.S. Hu, H.B. Sun, Q.L. Liang, Hydroxyl assisted rhodium catalyst supported on goethite nanoflower for chemoselective catalytic transfer hydrogenation of fully converted nitrostyrenes, Adv. Synth. Catal. 361 (13) (2019) 3146-3154 [17] Y.J. Ai, L. Liu, Z.N. Hu, J.F. Li, S.C. Ren, J.J. Wu, Y. Long, H.B. Sun, Q.L. Liang, In-situ construction of graphite-supported magnetic carbocatalysts from a metallo-supramolecular polymer:High performance for catalytic transfer hydrogenation, ChemNanoMat 6 (4) (2020) 629-638 [18] Y. Liu, D.F. Yin, Q.H. Xin, M.X. Lv, B. Bian, L. Li, C.X. Xie, S.T. Yu, S.W. Liu, Preparation of highly dispersed Ru nanoparticles supported on amine-functionalized magnetic nanoparticles:Efficient catalysts for the reduction of nitro compounds, Solid State Sci. 101 (2020) 106100 [19] D.C. Gowda, A.S. Prakasha Gowda, A.R. Baba, S. Gowda, Nickel-catalyzed formic acid reductions. A selective method for the reduction of nitro compounds, Synth. Commun. 30 (16) (2000) 2889-2895 [20] C.J. Jiang, Z.Y. Shang, X.H. Liang, Chemoselective transfer hydrogenation of nitroarenes catalyzed by highly dispersed, supported nickel nanoparticles, ACS Catal. 5 (8) (2015) 4814-4818 [21] J.L. Du, J.G. Hou, B. Li, R. Qin, C.X. Xu, H. Liu, Support-free 3D hierarchical nanoporous Cu@Cu2O for fast tandem ammonia borane dehydrogenation and nitroarenes hydrogenation under mild conditions, J. Alloys Compd. 815 (2020) 152372 [22] L.L. Geng, G. Li, X.L. Zhang, X.M. Wang, C.H. Li, Z.M. Liu, D.S. Zhang, Y.Z. Zhang, G.Y. Wang, H.X. Han, Rational design of CuO/SiO2 nanocatalyst with anchor structure and hydrophilic surface for efficient hydrogenation of nitrophenol, J. Solid State Chem. 296 (2021) 121960 [23] Q. Zhu, X. Sun, H. Zhao, D. Xu, Z.P. Dong, Selective transfer hydrogenation and N-formylation of nitroarenes by a facilely prepared N, S co-doped carbon-encapsulated cobalt nanoparticle catalyst, Ind. Eng. Chem. Res. 59 (13) (2020) 5615-5623 [24] A.K. Singh, Q. Xu, Synergistic catalysis over bimetallic alloy nanoparticles, ChemCatChem 5 (3) (2013) 652-676 [25] S.E. Habas, H. Lee, V. Radmilovic, G.A. Somorjai, P.D. Yang, Shaping binary metal nanocrystals through epitaxial seeded growth, Nat. Mater. 6 (9) (2007) 692-697 [26] H. Fang, M. Wen, H.X. Chen, Q.S. Wu, W.Y. Li, Graphene stabilized ultra-small CuNi nanocomposite with high activity and recyclability toward catalysing the reduction of aromatic nitro-compounds, Nanoscale 8 (1) (2016) 536-542 [27] J.W. Zhang, G.P. Lu, C. Cai, Chemoselective transfer hydrogenation of nitroarenes by highly dispersed Ni-Co BMNPs, Catal. Commun. 84 (2016) 25-29 [28] D.R. Petkar, B.S. Kadu, R.C. Chikate, Highly efficient and chemoselective transfer hydrogenation of nitroarenes at room temperature over magnetically separable Fe-Ni bimetallic nanoparticles, RSC Adv. 4 (16) (2014) 8004 [29] H.J. Bao, Y.N. Li, L. Liu, Y.J. Ai, J.J. Zhou, L. Qi, R.H. Jiang, Z.N. Hu, J.T. Wang, H.B. Sun, Q.L. Liang, Ultrafine FeCu alloy nanoparticles magnetically immobilized in amine-rich silica spheres for dehalogenation-proof hydrogenation of nitroarenes, Chem. Eur. J. 24 (54) (2018) 14418-14424 [30] X.T. Liu, L.K. Zhang, J.M. Wang, N.Z. Shang, S.T. Gao, C. Wang, Y.J. Gao, Transfer hydrogenation of nitroarenes catalyzed by CoCu anchored on nitrogen-doped porous carbon, Appl. Organomet. Chem. 34 (3) (2020) e5438 [31] S. Vivek, S. Preethi, T.H.V. Kumar, A.K. Sundramoorthy, K.S. Babu, Oxidation studies on mono (Cu, Ni) and bimetallic (Cu-Ni) nanoparticles and its impact on catalytic activity, J. Alloys Compd. 816 (2020) 152608 [32] Y.H. Zhou, S.Q. Wang, Y. Wan, J.J. Liang, Y. Chen, S.Z. Luo, C. Yong, Low-cost CuNi-CeO2/rGO as an efficient catalyst for hydrolysis of ammonia borane and tandem reduction of 4-nitrophenol, J. Alloys Compd. 728 (2017) 902-909 [33] K. Sahu, B. Satpati, S. Mohapatra, Facile synthesis and phase-dependent catalytic activity of cabbage-type copper oxide nanostructures for highly efficient reduction of 4-nitrophenol, Catal. Lett. 149 (9) (2019) 2519-2527 [34] H.B. Shi, X.F. Dai, Q. Liu, T. Zhang, Y.B. Zhang, Y.L. Shi, T. Wang, Magnetic CuNi alloy nanoparticles for catalytic transfer hydrogenation of nitroarene, Ind. Eng. Chem. Res. 60 (44) (2021) 16011-16022 [35] D. Astruc, F. Lu, J.R. Aranzaes, Nanoparticles as recyclable catalysts:The frontier between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed Engl. 44 (48) (2005) 7852-7872 [36] Adil SF, Ashraf M, Khan M, Assal ME, Shaik MR, Kuniyil M, Al-Warthan A, Siddiqui M, Tremel W, Tahir MN, Advances in graphene/inorganic nanoparticle composites for catalytic applications, Chem. Rec. 2022 Feb 1 (2022) e202100274 [37] S. Mohire, G.D. Yadav, Selective synthesis of hydrocinnamaldehyde over bimetallic Ni-Cu nanocatalyst supported on graphene oxide, Ind. Eng. Chem. Res. 57 (28) (2018) 9083-9093 [38] J.L. Li, X.Y. Ren, H. Lv, Y.Y. Wang, Y.F. Li, B. Liu, Highly efficient hydrogen production from hydrolysis of ammonia borane over nanostructured Cu@CuCoOx supported on graphene oxide, J. Hazard. Mater. 391 (2020) 122199 [39] S. Diyarbakir, H.S. Can, Ö. Metin, Reduced graphene oxide-supported CuPd alloy nanoparticles as efficient catalysts for the Sonogashira cross-coupling reactions, ACS Appl. Mater. Interfaces 7 (5) (2015) 3199-3206 [40] K. Ganjehyan, B. Nişancı, M. Sevim, A. Daştan, Ö. Metin, Monodisperse CuPt alloy nanoparticles assembled on reduced graphene oxide as catalysts in the transfer hydrogenation of various functional organic groups, Appl. Organomet. Chem. 33 (5) (2019) e4863 [41] X.F. Dai, W. Xu, T. Zhang, T. Wang, Self-reducible Cu nanoparticles for conductive inks, Ind. Eng. Chem. Res. 57 (7) (2018) 2508-2516 [42] H. Wang, J.T. Robinson, G. Diankov, H. Dai, Nanocrystal growth on graphene with various degrees of oxidation, J. Am. Chem. Soc. 132 (10) (2010) 3270-3271 [43] G. Goncalves, P. A. A. P. Marques, C. M. Granadeiro, H. I. S. Nogueira, M. K. Singh, J. Grácio, Surface modification of graphene nanosheets with gold nanoparticles:The role of oxygen moieties at graphene surface on gold nucleation and growth, Chem. Mater., 21(20) (2009) 4796-4802 [44] X.Z. Tang, Z.W. Cao, H.B. Zhang, J. Liu, Z.Z. Yu, Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach, Chem. Commun. 47 (11) (2011) 3084 [45] C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Raman fingerprint of charged impurities in graphene, Appl. Phys. Lett. 91 (23) (2007) 233108 [46] Ö. Metin, E. Kayhan, S. Özkar, J.J. Schneider, Palladium nanoparticles supported on chemically derived graphene:An efficient and reusable catalyst for the dehydrogenation of ammonia borane, Int. J. Hydrog. Energy 37 (10) (2012) 8161-8169 [47] K. Feng, J. Zhong, B.H. Zhao, H. Zhang, L. Xu, X.H. Sun, S.T. Lee, CuxCo1-xO nanoparticles on graphene oxide as A synergistic catalyst for high-efficiency hydrolysis of ammonia-borane, Angew. Chem. Int. Ed. 55 (39) (2016) 11950-11954 [48] L. Yang, W. Luo, G.Z. Cheng, Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane, ACS Appl. Mater. Interfaces 5 (16) (2013) 8231-8240 [49] H.L. Fei, J.C. Dong, C.Z. Wan, Z.P. Zhao, X. Xu, Z.Y. Lin, Y.L. Wang, H.T. Liu, K.T. Zang, J. Luo, S.L. Zhao, W. Hu, W.S. Yan, I. Shakir, Y. Huang, X.F. Duan, Microwave-assisted rapid synthesis of graphene-supported single atomic metals, Adv. Mater. 30 (35) (2018) e1802146 [50] Q. Wang, X.Y. Wang, J.L. Liu, Y.H. Yang, Cu-Ni core-shell nanoparticles:Structure, stability, electronic, and magnetic properties:A spin-polarized density functional study, J. Nanoparticle Res. 19 (2) (2017) 1-12 [51] F.Y. Tang, L.Q. Wang, M. Dessie Walle, A. Mustapha, Y.N. Liu, An alloy chemistry strategy to tailoring the d-band center of Ni by Cu for efficient and selective catalytic hydrogenation of furfural, J. Catal. 383 (2020) 172-180 [52] H.C. Zheng, K. Feng, Y.P. Shang, Z.H. Kang, X.H. Sun, J. Zhong, Cube-like CuCoO nanostructures on reduced graphene oxide for H2 generation from ammonia borane, Inorg. Chem. Front. 5 (5) (2018) 1180-1187 [53] A.K. Sasmal, S. Dutta, T. Pal, A ternary Cu2O-Cu-CuO nanocomposite:A catalyst with intriguing activity, Dalton Trans. 45 (7) (2016) 3139-3150 [54] E. Vasilikogiannaki, I. Titilas, G. Vassilikogiannakis, M. Stratakis, Cis-Semihydrogenation of alkynes with amine borane complexes catalyzed by gold nanoparticles under mild conditions, Chem. Commun. (Camb) 51 (12) (2015) 2384-2387 [55] Y.F. Zen, Z.C. Fu, F. Liang, Y. Xu, D.D. Yang, Z. Yang, X. Gan, Z.S. Lin, Y. Chen, W.F. Fu, Robust hydrogenation of nitrile and nitro groups to primary amines using Ni2 P as a catalyst and ammonia borane under ambient conditions, Asian J. Org. Chem. 6 (11) (2017) 1589-1593 [56] B.S. Akpa, C. D'Agostino, L.F. Gladden, K. Hindle, H. Manyar, J. McGregor, R. Li, M. Neurock, N. Sinha, E.H. Stitt, D. Weber, J.A. Zeitler, D.W. Rooney, Solvent effects in the hydrogenation of 2-butanone, J. Catal. 289 (2012) 30-41 [57] X.F. Dai, T. Zhang, H.B. Shi, Y.B. Zhang, T. Wang, Reactive sintering of Cu nanoparticles at ambient conditions for printed electronics, ACS Omega 5 (22) (2020) 13416-13423 [58] X.F. Dai, W. Xu, T. Zhang, H.B. Shi, T. Wang, Room temperature sintering of Cu-Ag core-shell nanoparticles conductive inks for printed electronics, Chem. Eng. J. 364 (2019) 310-319 [59] H. Göksu, H.S. Can, K. Şendil, M.S. Gültekin, Ö. Metin, CoPd alloy nanoparticles catalyzed tandem ammonia borane dehydrogenation and reduction of aromatic nitro, nitrile and carbonyl compounds, Appl. Catal. A Gen. 488 (2014) 176-182 [60] I. Platzman, R. Brener, H. Haick, R. Tannenbaum, Oxidation of polycrystalline copper thin films at ambient conditions, J. Phys. Chem. C 112 (4) (2008) 1101-1108 [61] T. Zhang, H.B. Shi, Y.B. Zhang, Q. Liu, W.Y. Fei, T. Wang, Hollow flower-like nickel particles as the promoter of ammonium perchlorate-based solid propellant, Appl. Surf. Sci. 552 (2021) 149506 [62] X.F. Guo, C. Yu, Z.Y. Yin, S.H. Sun, C.T. Seto, Hydrodehalogenation of polyhalogenated aromatics catalyzed by NiPd nanoparticles supported on nitrogen-doped graphene, ChemSusChem 11 (10) (2018) 1617-1620 [63] S. Fountoulaki, V. Daikopoulou, P.L. Gkizis, I. Tamiolakis, G.S. Armatas, I.N. Lykakis, Mechanistic studies of the reduction of nitroarenes by NaBH4 or hydrosilanes catalyzed by supported gold nanoparticles, ACS Catal. 4 (10) (2014) 3504-3511 [64] M. Muzzio, H.H. Lin, K.C. Wei, X.F. Guo, C. Yu, T. Yom, Z. Xi, Z.Y. Yin, S.H. Sun, Efficient hydrogen generation from ammonia borane and tandem hydrogenation or hydrodehalogenation over AuPd nanoparticles, ACS Sustainable Chem. Eng. 8 (7) (2020) 2814-2821 |