[1] S. Damodaran, Protein stabilization of emulsions and foams, J. Food Sci. 70 (3) (2005) R54-R66 [2] P. Bertsch, L. Böcker, A. Mathys, P. Fischer, Proteins from microalgae for the stabilization of fluid interfaces, emulsions, and foams, Trends Food Sci. Technol. 108 (2021) 326-342 [3] L. Amagliani, C. Schmitt, Globular plant protein aggregates for stabilization of food foams and emulsions, Trends Food Sci. Technol. 67 (2017) 248-259 [4] C. Pinholt, R.A. Hartvig, N.J. Medlicott, L. Jorgensen, The importance of interfaces in protein drug delivery-why is protein adsorption of interest in pharmaceutical formulations? Expert Opin. Drug Deliv. 8 (7) (2011) 949-964 [5] E. Bouyer, G. Mekhloufi, V. Rosilio, J.L. Grossiord, F. Agnely, Proteins, polysaccharides, and their complexes used as stabilizers for emulsions:alternatives to synthetic surfactants in the pharmaceutical field? Int. J. Pharm. 436 (1-2) (2012) 359-378 [6] J.R. de Andrade, M.F. Oliveira, M.G.C. da Silva, M.G.A. Vieira, Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials:a review, Ind. Eng. Chem. Res. 57 (9) (2018) 3103-3127 [7] K. Kang, D.N. Lu, Z. Liu, Temperature-triggered protein adsorption and desorption on temperature-responsive PNIPAAm-grafted-silica:molecular dynamics simulation and experimental validation, Chin. J. Chem. Eng. 20 (2) (2012) 284-293 [8] G. Dalkas, S.R. Euston, Molecular simulation of protein adsorption and conformation at gas-liquid, liquid-liquid and solid-liquid interfaces, Curr. Opin. Colloid Interface Sci. 41 (2019) 1-10 [9] D.H. Zhao, Y.Q. Wang, Q.W. Su, L.B. Li, J. Zhou, Lysozyme adsorption on porous organic cages:a molecular simulation study, Langmuir 36 (41) (2020) 12299-12308 [10] Z.F. Li, K.A. Fichthorn, S.T. Milner, Surfactant binding to polymer-water interfaces in atomistic simulations, Langmuir 32 (30) (2016) 7519-7529 [11] Y.W. Dong, M.L. Liao, X.L. Meng, G.N. Somero, Structural flexibility and protein adaptation to temperature:molecular dynamics analysis of malate dehydrogenases of marine molluscs, Proc. Natl. Acad. Sci. USA 115 (6) (2018) 1274-1279 [12] D. Zare, J.R. Allison, K.M. McGrath, Molecular dynamics simulation of β-lactoglobulin at different oil/water interfaces, Biomacromolecules 17 (5) (2016) 1572-1581 [13] D.L. Cheung, Adsorption and conformations of lysozyme and α-lactalbumin at a water-octane interface, J. Chem. Phys. 147 (19) (2017) 195101 [14] M. Sarker, H. Lee, R.A. Gonçalves, Y.M. Lam, H.B. Su, S. Lim, Supramolecular assemblies:supramolecular protein assembly retains its structural integrity at liquid-liquid interface (adv. mater. interfaces 4/2020), Adv. Mater. Interfaces 7 (4) (2020) 2070021 [15] S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, The MARTINI force field:coarse grained model for biomolecular simulations, J. Phys. Chem. B 111 (27) (2007) 7812-7824 [16] L. Monticelli, S.K. Kandasamy, X. Periole, R.G. Larson, D.P. Tieleman, S.J. Marrink, The MARTINI coarse-grained force field:extension to proteins, J. Chem. Theory Comput. 4 (5) (2008) 819-834 [17] S.J. Marrink, D.P. Tieleman, Perspective on the martini model, Chem. Soc. Rev. 42 (16) (2013) 6801 [18] J. Liang, G. Fieg, S. Jakobtorweihen, Molecular dynamics simulations of a binary protein mixture adsorption onto ion-exchange adsorbent, Ind. Eng. Chem. Res. 54 (10) (2015) 2794-2802 [19] A.A. Vodopivec, Y.W. Chen, P.S. Russo, F.R. Hung, Molecular dynamics simulations of nanostructures formed by hydrophobins and oil in seawater, J. Phys. Chem. B 125 (28) (2021) 7886-7899 [20] A. Laio, M. Parrinello, Escaping free-energy minima, Proc. Natl. Acad. Sci. USA 99 (20) (2002) 12562-12566 [21] A. Laio, F.L. Gervasio, Metadynamics:a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science, Rep. Prog. Phys. 71 (12) (2008) 126601 [22] A. Barducci, M. Bonomi, M. Parrinello, Metadynamics, Wires Comput. Mol. Sci. 1 (5) (2011) 826-843 [23] G.M. Torrie, J.P. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation:umbrella sampling, J. Comput. Phys. 23 (2) (1977) 187-199 [24] J. Kästner, Umbrella sampling, Wiley Interdiscip. Rev. Comput. Mol. Sci. 1 (6) (2011) 932-942 [25] A. Andersen, P.N. Reardon, S.S. Chacon, N.P. Qafoku, N.M. Washton, M. Kleber, Protein-mineral interactions:molecular dynamics simulations capture importance of variations in mineral surface composition and structure, Langmuir 32 (24) (2016) 6194-6209 [26] G.B. Brandani, M. Schor, R. Morris, N. Stanley-Wall, C.E. MacPhee, D. Marenduzzo, U. Zachariae, The bacterial hydrophobin BslA is a switchable ellipsoidal Janus nanocolloid, Langmuir 31 (42) (2015) 11558-11563 [27] Y. Zhao, Z.Y. Chen, J.K. Li, M.S. Xu, Y.Y. Shao, Y.G. Tu, Formation mechanism of ovalbumin gel induced by alkali, Food Hydrocoll. 61 (2016) 390-398 [28] Y.X. Sun, S. Hayakawa, K. Izumori, Modification of ovalbumin with a rare ketohexose through the Maillard reaction:effect on protein structure and gel properties, J. Agric. Food Chem. 52 (5) (2004) 1293-1299 [29] S.Y. Yu, J.H. Hu, X.Y. Pan, P. Yao, M. Jiang, Stable and pH-sensitive nanogels prepared by self-assembly of chitosan and ovalbumin, Langmuir 22 (6) (2006) 2754-2759 [30] R.J.B.M. Delahaije, F.J. Lech, P.A. Wierenga, Investigating the effect of temperature on the formation and stabilization of ovalbumin foams, Food Hydrocoll. 91 (2019) 263-274 [31] A.A. Simiqueli, M. Vidigal, V. Minim, L.A. Minim, Ovalbumin and guar gum foam and its surface properties as influenced by sucrose and sorbitol, Int. J. Biol. Macromol. 135 (2019) 226-232 [32] Y. Mine, T. Noutomi, N. Haga, Emulsifying and structural properties of ovalbumin, J. Agric. Food Chem. 39 (3) (1991) 443-446 [33] P. Thareja, Y.C. Saraswat, C. Oberoi, Ovalbumin-stabilized concentrated emulsion gels, Bull. Mater. Sci. 43 (1) (2020) 1-8 [34] Z.Y. Xiong, M.J. Zhang, M.H. Ma, Emulsifying properties of ovalbumin:improvement and mechanism by phosphorylation in the presence of sodium tripolyphosphate, Food Hydrocoll. 60 (2016) 29-37 [35] S. Jalili-Firoozinezhad, M. Filippi, F. Mohabatpour, D. Letourneur, A. Scherberich, Chicken egg white:Hatching of a new old biomaterial, Mater. Today 40 (2020) 193-214 [36] F.G. Pearce, S.H. Mackintosh, J.A. Gerrard, Formation of amyloid-like fibrils by ovalbumin and related proteins under conditions relevant to food processing, J. Agric. Food Chem. 55 (2) (2007) 318-322 [37] W.F. Xiong, C. Ren, W.P. Jin, J. Tian, Y.T. Wang, B.R. Shah, J. Li, B. Li, Ovalbumin-chitosan complex coacervation:phase behavior, thermodynamic and rheological properties, Food Hydrocoll. 61 (2016) 895-902 [38] S.C. Diesner, R. Knittelfelder, D. Krishnamurthy, I. Pali-Schöll, L. Gajdzik, E. Jensen-Jarolim, E. Untersmayr, Dose-dependent food allergy induction against ovalbumin under acid-suppression:a murine food allergy model, Immunol. Lett. 121 (1) (2008) 45-51 [39] H. Cole, D. Bryan, L. Lancaster, F. Mawas, D. Vllasaliu, Chitosan nanoparticle antigen uptake in epithelial monolayers can predict mucosal but not systemic in vivo immune response by oral delivery, Carbohydr. Polym. 190 (2018) 248-254 [40] F. Geng, Y.X. Xie, J.Q. Wang, S.G. Li, Y.G. Jin, M.H. Ma, Large-scale purification of ovalbumin using polyethylene glycol precipitation and isoelectric precipitation, Poult. Sci. 98 (3) (2019) 1545-1550 [41] B. Panjwani, S. Gupta, P. Thareja, Ovalbumin at oil-water interfaces:adsorption and emulsification, J. Dispers. Sci. Technol. 39 (8) (2018) 1126-1133 [42] F.G. Niu, D.B. Niu, H.J. Zhang, C.H. Chang, L.P. Gu, Y.J. Su, Y.J. Yang, Ovalbumin/gum Arabic-stabilized emulsion:Rheology, emulsion characteristics, and Raman spectroscopic study, Food Hydrocoll. 52 (2016) 607-614 [43] A.S. Determan, J.R. Graham, K.A. Pfeiffer, B. Narasimhan, The role of microsphere fabrication methods on the stability and release kinetics of ovalbumin encapsulated in polyanhydride microspheres, J. Microencapsul. 23 (8) (2006) 832-843 [44] J.J. Lee, A. Shim, S.Y. Lee, B.E. Kwon, S.R. Kim, H.J. Ko, H.J. Cho, Ready-to-use colloidal adjuvant systems for intranasal immunization, J. Colloid Interface Sci. 467 (2016) 121-128 [45] Y.F. Xia, J. Wu, W. Wei, Y.Q. Du, T. Wan, X.W. Ma, W.Q. An, A.Y. Guo, C.Y. Miao, H. Yue, S.G. Li, X.T. Cao, Z.G. Su, G.H. Ma, Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination, Nat. Mater. 17 (2) (2018) 187-194 [46] D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, GROMACS:fast, flexible, and free, J. Comput. Chem. 26 (16) (2005) 1701-1718 [47] W. Humphrey, A. Dalke, K. Schulten, VMD:visual molecular dynamics, J. Mol. Graph. 14 (1) (1996) 33-38, 27-8 [48] G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling, J Chem Phys 126 (1) (2007) 014101 [49] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals:a new molecular dynamics method, J. Appl. Phys. 52 (12) (1981) 7182-7190 [50] T. Darden, D. York, L. Pedersen, Particle mesh Ewald:an N?log(N) method for Ewald sums in large systems, J. Chem. Phys. 98 (12) (1993) 10089-10092 [51] B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije, LINCS:a linear constraint solver for molecular simulations, J. Comput. Chem. 18 (12) (1997) 1463-1472 [52] W. Ge, L.Q. Lu, S.W. Liu, J. Xu, F.G. Chen, J.H. Li, Multiscale discrete supercomputing-A game changer for process simulation? Chem. Eng. Technol. 38 (4) (2015) 575-584 [53] E. Antunes, A. Cavaco-Paulo, Stratum corneum lipid matrix with unusual packing:a molecular dynamics study, Colloids Surf B Biointerfaces 190 (2020) 110928 [54] M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci, R.A. Broglia, M. Parrinello, PLUMED:a portable plugin for free-energy calculations with molecular dynamics, Comput. Phys. Commun. 180 (10) (2009) 1961-1972 [55] G.A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, G. Bussi, PLUMED 2:new feathers for an old bird, Comput. Phys. Commun. 185 (2) (2014) 604-613 [56] F. Tani, N. Shirai, Y. Nakanishi, N. Kitabatake, Analysis of molecular interactions in heat-induced aggregation of a non-inhibitory serpin ovalbumin using a molecular chaperone, Biosci. Biotechnol. Biochem. 67 (5) (2003) 1030-1038 [57] X. Zhou, C.Y. Chen, C.Y. Cao, T. Song, H.Q. Yang, W.G. Song, Enhancing reaction rate in a Pickering emulsion system with natural magnetotactic bacteria as nanoscale magnetic stirring bars, Chem. Sci. 9 (9) (2018) 2575-2580 [58] M.A. Hussein, A.A. Mohammed, M.A. Atiya, Application of emulsion and Pickering emulsion liquid membrane technique for wastewater treatment:an overview, Environ. Sci. Pollut. Res. Int. 26 (36) (2019) 36184-36204 [59] A.R. Richter, J.P.A. Feitosa, H.C.B. Paula, F.M. Goycoolea, R.C.M. de Paula, Pickering emulsion stabilized by cashew gum poly-l-lactide copolymer nanoparticles:synthesis, characterization and amphotericin B encapsulation, Colloids Surf. B Biointerfaces 164 (2018) 201-209 [60] M. Jo, C. Ban, K.K.T. Goh, Y.J. Choi, Gastrointestinal digestion and stability of submicron-sized emulsions stabilized using waxy maize starch crystals, Food Hydrocoll. 84 (2018) 343-352 |