[1] N.H. Cho, J.E. Shaw, S. Karuranga, Y. Huang, J.D.d.R. Fernandes, A.W. Ohlrogge, B. Malanda, IDF diabetes atlas:Global estimates of diabetes prevalence for 2017 and projections for 2045, Diabetes Res. Clin. Pract. 138 (2018) 271-281 [2] K. Kaul, J.M. Tarr, S.I. Ahmad, E.M. Kohner, R. Chibber, Introduction to diabetes mellitus, Adv. Exp. Med. Biol. 771 (2012) 1-11 [3] L.M. Delahanty, The look ahead study:Implications for clinical practice go beyond the headlines, J. Acad. Nutr. Diet. 114 (2014) 537-542 [4] S. Horber, P. Achenbach, E. Schleicher, A. Peter, Harmonization of immunoassays for biomarkers in diabetes mellitus, Biotechnol. Adv. 39 (2020) 15 [5] N. Razaz, E. Villamor, G.M. Muraca, A.-K.E. Bonamy, S. Cnattingius, Maternal obesity and risk of cardiovascular diseases in offspring:a population -based cohort and sibling -controlled study, Lancet Diabetes Endocrinol. 8 (2020) 572-581 [6] P. Saravanan, G. Gestational diabetes:opportunities for improving maternal and child health, Lancet Diabetes Endocrinol. 8 (2020) 793-800 [7] A.M. Mistry, K. Reynolds, Comparison of quality of life in diabetics using subcutaneous insulin infusion therapy versus insulin injection therapy, Faseb J. 22 (2008) [8] M. Monami, C. Lamanna, N. Marchionni, E. Mannucci, Continuous subcutaneous insulin infusion versus multiple daily insulin injections in type 1 diabetes:a meta-analysis, Acta Diabetol. 47 (2010) S77-S81 [9] K.A.S. Al-Japairai, S. Mahmood, S.H. Almurisi, J.R. Venugopal, A.R. Hilles, M. Azmana, S. Raman, Current trends in polymer microneedle for transdermal drug delivery, Int. J. Pharm. 587 (2020) 119673 [10] R.S.J. Ingrole, E. Azizoglu, M. Dul, J.C. Birchall, H.S. Gill, M.R. Prausnitz, Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity, Biomaterials 267 (2021) 120491-120491 [11] R. Jamaledin, C. Di Natale, V. Onesto, Z.B. Taraghdari, E.N. Zare, P. Makvandi, R. Vecchione, P.A. Netti, Progress in microneedle-mediated protein delivery, J. Clin. Med. 9 (2020) 25 [12] R. Jamaledin, P. Makvandi, C.K.Y. Yiu, T. Agarwal, R. Vecchione, W. Sun, T.K. Maiti, F.R. Tay, P.A. Netti, Engineered microneedle patches for controlled release of active compounds:Recent advances in release profile tuning, Adv. Ther. (2020) 2000171 [13] D. Li, D. Hu, H. Xu, H.K. Patra, X. Liu, Z. Zhou, J. Tang, N. Slater, Y. Shen, Progress and perspective of microneedle system for anti-cancer drug delivery, Biomaterials 264 (2021) 120410 [14] R. Ali, P. Mehta, P.K. Monou, M.S. Arshad, E. Panteris, M. Rasekh, N. Singh, O. Qutachi, P. Wilson, D. Tzetzis, M.-W. Chang, D.G. Fatouros, Z. Ahmad, Electrospinning/electrospraying coatings for metal microneedles:A design of experiments (DOE) and quality by design (QbD) approach, Eur. J. Pharm. Biopharm. 156 (2020) 20-39 [15] C. Di Natale, D. De Rosa, M. Profeta, R. Jamaledin, A. Attanasio, E. Lagreca, P.L. Scognamiglio, P.A. Netti, R. Vecchione, Design of biodegradable bi-compartmental microneedles for the stabilization and the controlled release of the labile molecule collagenase for skin healthcare, J. Mat. Chem. B 9 (2021) 392-403 [16] Z.L. Hu, C.S. Meduri, R.S.J. Ingrole, H.S. Gill, G. Kumar, Solid and hollow metallic glass microneedles for transdermal drug-delivery, Appl. Phys. Lett. 116 (2020) 5 [17] A. Ullah, H.J. Choi, M. Jang, S. An, G.M. Kim, Smart microneedles with porous polymer layer for glucose-responsive insulin delivery, Pharmaceutics 12 (2020) 606 [18] L. Lema-Perez, C.E. Builes-Montano, H. Alvarez, A phenomenological-based semi-physical model of the kidneys and its role in glucose metabolism, J. Theor. Biol. 508 (2021) 110489 [19] Z. Lei, Y. Ju, Y. Lin, X. Bai, Z. Tong, Reactive oxygen species synergistic pH/H2O2-responsive of poly(L-lactic acid)-block-poly(sodium 4-styrenesulfonate)/citrate-Fe(III)@ZIF-8 hybrid nanocomposites for controlled drug release, ACS Appl. Bio Mater. 2 (2019) 3648-3658 [20] Z.T. Lei, Q.J. Tang, Y.S. Ju, Y.H. Lin, X.W. Bai, H.P. Luo, Z.Z. Tong, Block copolymer@ZIF-8 nanocomposites as a pH-responsive multi-steps release system for controlled drug delivery, J. Biomater. Sci.-Polym. Ed. 31 (2020) 695-711 [21] J.Y. Zhou, H.A. Xu, Z.Z. Tong, Y.H. Yang, G.H. Jiang, Photo/pH-controlled host guest interaction between an azobenzene-containing block copolymer and water-soluble pillar 6 arene as a strategy to construct the "compound vesicles" for controlled drug delivery, Mater. Sci. Eng. C 89 (2018) 237-244 [22] B. Chu, Y. Qu, X. He, Y. Hao, C. Yang, Y. Yang, D. Hu, F. Wang, Z. Qian, ROS-responsive camptothecin prodrug nanoparticles for on-demand drug release and combination of chemotherapy and photodynamic therapy, Adv. Funct. Mater. 30 (2020) 2005918 [23] W.X. Gao, Y.L. Hu, L. Xu, M.C. Liu, H.Y. Wu, B. He, Dual pH and glucose sensitive gel gated mesoporous silica nanoparticles for drug delivery, Chin. Chem. Lett. 29 (2018) 1795-1798 [24] A. Karmakar, P.G.M. Mileo, I. Bok, S.B. Peh, J. Zhang, H.Y. Yuan, G. Maurin, D. Zhao, Thermo-responsive MOF/polymer composites for temperature-mediated water capture and release, Angew. Chem.Int. Edit. 59 (2020) 11003-11009 [25] H.P. Li, J.L. He, M.Z. Zhang, J. Liu, P.H. Ni, Glucose-sensitive polyphosphoester diblock copolymer for an insulin delivery system, ACS Biomater. Sci. Eng. 6 (2020) 1553-1564 [26] Y. Liu, D. Chen, A. Zhang, M. Xiao, Z. Li, W. Luo, Y. Pan, W. Qu, S. Xie, Composite inclusion complexes containing hyaluronic acid/chitosan nanosystems for dual responsive enrofloxacin release, Carbohydr. Polym. 252 (2021) 117162 [27] R. Huang, Y.-W. Shen, Y.-Y. Guan, Y.-X. Jiang, Y. Wu, K. Rahman, L.-J. Zhang, H.-J. Liu, X. Luan, Mesoporous silica nanoparticles:Facile surface functionalization and versatile biomedical applications in oncology, Acta Biomater. 116 (2020) 1-15 [28] M. Manzano, M. Vallet-Regi, Mesoporous silica nanoparticles for drug delivery, Adv. Funct. Mater. 30 (2020) 1902634 [29] N. Thi Ngoc Tram, L. Ngoc Thuy Trang, N. Ngoc Hoi, L. Bui Thi Kim, N. Trinh Duy, N. Dai Hai, Aminated hollow mesoporous silica nanoparticles as an enhanced loading and sustained releasing carrier for doxorubicin delivery, Microporous Mesoporous Mater. 309 (2020) 110543 [30] B.W. Yang, Y. Chen, J.L. Shi, Mesoporous silica/organosilica nanoparticles:Synthesis, biological effect and biomedical application, Mater. Sci. Eng. R-Rep. 137 (2019) 66-105 [31] R. Han, S. Wu, K. Tang, Y. Hou, Facilitating drug release in mesoporous silica coated upconversion nanoparticles by photoacid assistance upon near-infrared irradiation, Adv. Powder Technol. 31 (2020) 3860-3866 [32] A. Seth, H.G. Derami, P. Gupta, Z. Wang, P. Rathi, R. Gupta, T. Cao, J.J. Morrissey, S. Singamaneni, Polydopamine-mesoporous silica core-shell nanoparticles for combined photothermal immunotherapy, ACS Appl. Mater. Interfaces 12 (2020) 42499-42510 [33] D. Drozd, H. Zhang, I. Goryacheva, S. De Saeger, N.V. Beloglazova, Silanization of quantum dots:Challenges and perspectives, Talanta 205 (2019) 120164 [34] H.L. Wang, F.C. Lee, T.Y. Tang, C.G. Zhou, D.H. Tsai, Assembly of functional gold nanoparticle on silica microsphere, J. Colloid Interface Sci. 469 (2016) 99-108 [35] W. Zhu, A. Noureddine, J.Y. Howe, J.M. Guo, C.J. Brinker, Conversion of metal-organic cage to ligand-free ultrasmall noble metal nanocluster catalysts confined within mesoporous silica nanoparticle supports, Nano Lett. 19 (2019) 1512-1519 [36] L. Wan, X.L. Tan, T. Sun, Y.L. Sun, J. Luo, H.Y. Zhang, Lubrication and drug release behaviors of mesoporous silica nanoparticles grafted with sulfobetaine-based zwitterionic polymer, Mater. Sci. Eng. C 112 (2020) 110886 [37] W. Hu, X.W. Bai, Y.P. Wang, Z.T. Lei, H.P. Luo, Z.Z. Tong, Upper critical solution temperature polymer-grafted hollow mesoporous silica nanoparticles for near-infrared-irradiated drug release, J. Mater. Chem. B 7 (2019) 5789-5796 [38] Y. Lin, W. Hu, X. Bai, Y. Ju, X. Kong, Glucose- and pH-responsive supramolecular polymer vesicles based on host-guest interaction for transcutaneous delivery of insulin, ACS Appl. Bio Mater. 3 (2020) 6376-6383 [39] Z. Chai, H. Dong, X. Sun, Y. Fan, Y. Wang, F. Huang, Development of glucose oxidase-immobilized alginate nanoparticles for enhanced glucose-triggered insulin delivery in diabetic mice, Int. J. Biol. Macromol. 159 (2020) 640-647 [40] X. Hu, J. Yu, C. Qian, Y. Lu, A.R. Kahkoska, Z. Xie, X. Jing, J.B. Buse, Z. Gu, H2O2-responsive vesicles integrated with transcutaneous patches for glucose-mediated insulin delivery, ACS Nano 11 (2017) 613-620 [41] B. Xu, Q. Cao, Y. Zhang, W. Yu, J. Zhu, D. Liu, G. Jiang, Microneedles integrated with ZnO quantum-dot-capped mesoporous bioactive glasses for glucose-mediated insulin delivery, ACS Biomater. Sci. Eng. 4 (2018) 2473-2483 [42] Y. Li, J. Du, S.P. Armes, Shell cross-linked micelles as cationic templates for the preparation of silica-coated nanoparticles:Strategies for controlling the mean particle diameter, Macromol. Rapid Commun. 30 (2009) 464-468 [43] X. Huang, N. Hauptmann, D. Appelhans, P. Formanek, S. Frank, S. Kaskel, A. Temme, B. Voit, Synthesis of hetero-polymer functionalized nanocarriers by combining surface-initiated ATRP and RAFT polymerization, Small 8 (2012) 3579-3583 [44] J.-T. Sun, C.-Y. Hong, C.-Y. Pan, Fabrication of PDEAEMA-coated mesoporous silica nanoparticles and pH-responsive controlled release, J. Phys. Chem. C 114 (2010) 12481-12486 [45] J. Lu, N. Li, Q. Xu, J. Ge, J. Lu, X. Xia, Acetals moiety contained pH-sensitive amphiphilic copolymer self-assembly used for drug carrier, Polymer 51 (2010) 1709-1715 [46] B.S. Tian, S.H. Liu, S.Y. Wu, W. Lu, D. Wang, L. Jin, B. Hu, K. Li, Z.L. Wang, Z.W. Quan, pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin, Colloid Surf. B-Biointerfaces 154 (2017) 287-296 [47] Z. Tong, J. Zhou, J. Zhong, Q. Tang, Z. Lei, H. Luo, P. Ma, X. Liu, Glucose- and H2O2-responsive polymeric vesicles integrated with microneedle patches for glucose-sensitive transcutaneous delivery of insulin in diabetic rats, ACS Appl. Mater. Interfaces 10 (2018) 20014-20024 [48] B. Xu, G. Jiang, W. Yu, D. Liu, Y. Zhang, J. Zhou, S. Sun, Y. Liu, H2O2-responsive mesoporous silica nanoparticles integrated with microneedle patches for the glucose-monitored transdermal delivery of insulin, J. Mater. Chem. B 5 (2017) 8200-8208 [49] J.Y. Zhou, Q.J. Tang, J.X. Zhong, Z.T. Lei, H.P. Luo, Z.Z. Tong, G.H. Jiang, X.D. Liu, Construction of glucose and H2O2 dual stimuli-responsive polymeric vesicles and their application in controlled drug delivery, J. Mater. Sci. 53 (2018) 14063-14074 [50] J. Yu, Y. Zhang, Y. Ye, R. DiSanto, W. Sun, D. Ranson, F.S. Ligler, J.B. Buse, Z. Gu, Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 8260-8265 |