Chinese Journal of Chemical Engineering ›› 2022, Vol. 51 ›› Issue (11): 178-198.DOI: 10.1016/j.cjche.2021.10.003
Previous Articles Next Articles
Teng Wang1, Miao Gui1,2, Jinle Zhao1, Qincheng Bi1, Tao Zhang1
Received:
2021-06-13
Revised:
2021-10-08
Online:
2023-01-18
Published:
2022-11-18
Contact:
Qincheng Bi,E-mail:qcbi@mail.xjtu.edu.cn
Supported by:
Teng Wang1, Miao Gui1,2, Jinle Zhao1, Qincheng Bi1, Tao Zhang1
通讯作者:
Qincheng Bi,E-mail:qcbi@mail.xjtu.edu.cn
基金资助:
Teng Wang, Miao Gui, Jinle Zhao, Qincheng Bi, Tao Zhang. Void fraction measurement and calculation model of vertical upward co-current air–water slug flow[J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 178-198.
Teng Wang, Miao Gui, Jinle Zhao, Qincheng Bi, Tao Zhang. Void fraction measurement and calculation model of vertical upward co-current air–water slug flow[J]. 中国化学工程学报, 2022, 51(11): 178-198.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.10.003
[1] P.V. Godbole, C.C. Tang, A.J. Ghajar, Comparison of void fraction correlations for different flow patterns in upward vertical two-phase flow, Heat Transf. Eng. 32 (10) (2011) 843-860 [2] J.B. Jia, A. Babatunde, M. Wang, Void fraction measurement of gas-liquid two-phase flow from differential pressure, Flow Meas. Instrum. 41 (2015) 75-80 [3] M. Gui, Z.H. Liu, B. Liao, T. Wang, Y. Wang, Z.Q. Sui, Q.C. Bi, J. Wang, Void fraction measurements of steam-water two-phase flow in vertical rod bundle:Comparison among different techniques, Exp. Therm. Fluid Sci. 109 (2019) 109881 [4] M.V. Sardeshpande, S. Harinarayan, V.V. Ranade, Void fraction measurement using electrical capacitance tomography and high speed photography, Chem. Eng. Res. Des. 94 (2015) 1-11 [5] T. Hibiki, K. Mishima, H. Nishihara, Measurement of radial void fraction distribution of two-phase flow in a metallic round tube using neutrons as microscopic probes, Nucl. Instruments Methods Phys. Res. Sect. A:Accel. Spectrometers Detect. Assoc. Equip. 399 (2-3) (1997) 432-438 [6] J. Kim, Y.C. Ahn, M.H. Kim, Measurement of void fraction and bubble speed of slug flow with three-ring conductance probes, Flow Meas. Instrum. 20 (3) (2009) 103-109 [7] M. Gui, T. Wang, Z.H. Liu, Z.Q. Sui, Q.C. Bi, Void fractions in a rod bundle geometry at high pressure-part Ⅰ:Experimental study, Int. J. Multiph. Flow 122 (2020) 103146 [8] M. Gui, Z.H. Liu, T. Wang, Z.Q. Sui, Q.C. Bi, Void fractions in a rod bundle geometry at high pressure-Part Ⅱ:Drift-flux model assessment and development, Int. J. Multiph. Flow 125 (2020) 103231 [9] S.G. Bankoff, A variable density single-fluid model for two-phase flow with particular reference to steam-water flow, J. Heat Transf. 82 (4) (1960) 265-272 [10] N. Zuber, J.A. Findlay, Average volumetric concentration in two-phase flow systems, J. Heat Transf. 87 (4) (1965) 453-468 [11] D. Butterworth, A comparison of some void-fraction relationships for co-current gas-liquid flow, Int. J. Multiph. Flow 1 (6) (1975) 845-850 [12] A.O. Morgado, J.M. Miranda, J.D.P. Araújo, J.B.L.M. Campos, Review on vertical gas-liquid slug flow, Int. J. Multiph. Flow 85 (2016) 348-368 [13] J. Enrique Juliá, W.K. Harteveld, R.F. Mudde, H.E.A. van den Akker, On the accuracy of the void fraction measurements using optical probes in bubbly flows, Rev. Sci. Instrum. 76 (3) (2005) 035103 [14] L.S. Tong, Y.S. Tang, Flow boiling. Boiling Heat Transfer and Two-Phase Flow, Taylor & Francis, London, 1997 [15] M.A. Woldesemayat, A.J. Ghajar, Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes, Int. J. Multiph. Flow 33 (4) (2007) 347-370 [16] A.A. Armand, The resistance during the movement of a two-phase system in horizontal pipes, Izv Vse Tepl Inst, 1 (1946) 16-23 [17] G.A. Hughmark, Hold-up in gas-liquid flow, Chem. Eng. Prog. 58 (1962) 62-65 [18] R.H. Bonnecaze, W. Erskine, E.J. Greskovich, Holdup and pressure drop for two-phase slug flow in inclined pipelines, AIChE J. 17 (5) (1971) 1109-1113 [19] A. Premoli, D.D. Francesco, A. Prina, A dimensional correlation for evaluating two-phase mixture density, in:European Two-Phase Flow Group Meeting, Milan, Italy, 1971. [20] J. Schmidt, H. Giesbrecht, C.W.M. van der Geld, Phase and velocity distributions in vertically upward high-viscosity two-phase flow, Int. J. Multiph. Flow 34 (4) (2008) 363-374 [21] S.M. Bhagwat, A.J. Ghajar, A flow pattern independent drift flux model based void fraction correlation for a wide range of gas-liquid two phase flow, Int. J. Multiph. Flow 59 (2014) 186-205 [22] S.P. Evgenidis, T.D. Karapantsios, Gas-liquid flow of sub-millimeter bubbles at low void fractions:Void fraction prediction using drift-flux model, Exp. Therm. Fluid Sci. 98 (2018) 195-205 [23] G.B. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill, New York, 1969 [24] M. Ishii, One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes, ANL-77-47, Office of Scientific and Technical Information (OSTI), 1977. [25] T. Hibiki, M. Ishii, One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes, Int. J. Heat Mass Transf. 46 (25) (2003) 4935-4948 [26] S. Guet, S. Decarre, V. Henriot, A. Liné, Void fraction in vertical gas-liquid slug flow:Influence of liquid slug content, Chem. Eng. Sci. 61 (22) (2006) 7336-7350 [27] N. Brauner, A. Ullmann, Modelling of gas entrainment from Taylor bubbles. Part A:Slug flow, Int. J. Multiph. Flow 30 (3) (2004) 239-272 [28] Z.L. Liu, R.Q. Liao, W. Luo, Y.B. Su, J.X.F. Ribeiro, A new model for predicting slug flow liquid holdup in vertical pipes with different viscosities, Arab. J. Sci. Eng. 45 (9) (2020) 7741-7750 [29] O.A. Adekomaya, An improved version of drift-flux model for predicting pressure-gradient and void-fraction in vertical and near vertical slug flow, J. Petroleum Sci. Eng. 116 (2014) 103-108 [30] T. Wang, M. Gui, T. Zhang, Q.C. Bi, J.L. Zhao, Z.H. Liu, Experimental investigation on characteristic parameters of air-water slug flow in a vertical tube, Chem. Eng. Sci. 246 (2021) 116895 [31] S. Paranjape, S.W. Chen, T. Hibiki, M. Ishii, Flow regime identification under adiabatic upward two-phase flow in a vertical rod bundle geometry, J. Fluids Eng. 133 (9) (2011) 091302 [32] T. Wang, Z.H. Liu, M. Gui, Q.C. Bi, Z.Q. Sui, Flow regime identification of steam-water two-phase flow using optical probes, based on local parameters in vertical tube bundles, Flow Meas. Instrum. 79 (2021) 101928 [33] M. Mac Giolla Eain, V. Egan, J. Punch, Film thickness measurements in liquid-liquid slug flow regimes, Int. J. Heat Fluid Flow 44 (2013) 515-523 [34] L. Liu, B.F. Bai, Error analysis of liquid holdup measurement in gas-liquid annular flow through circular pipes using high-speed camera method, J. Shanghai Jiaotong Univ. Sci. 23 (1) (2018) 34-40 [35] J.Y. Kim, A.J. Ghajar, A general heat transfer correlation for non-boiling gas-liquid flow with different flow patterns in horizontal pipes, Int. J. Multiph. Flow 32 (4) (2006) 447-465 [36] T.S. Mayor, A.M.F.R. Pinto, J.B.L.M. Campos, Hydrodynamics of gas-liquid slug flow along vertical pipes in turbulent regime:A simulation study, Chem. Eng. Res. Des. 85 (11) (2007) 1497-1513 [37] R.A.S. Brown, The mechanics of large gas bubbles in tubes:II. The prediction of voidage in vertical gas-liquid flow, Can. J. Chem. Eng. 43 (1965) 224-230 [38] E.W. Llewellin, E. del Bello, J. Taddeucci, P. Scarlato, S.J. Lane, The thickness of the falling film of liquid around a Taylor bubble, Proc. R. Soc. A. 468 (2140) (2012) 1041-1064 [39] D.T. Dumitrescu, Strömung an einer Luftblase im senkrechten Rohr, Z. Angew. Math. Mech. 23 (3) (1943) 139-149 [40] S. Nogueira, M.L. Riethmuler, J.B.L.M. Campos, A.M.F.R. Pinto, Flow in the nose region and annular film around a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids, Chem. Eng. Sci. 61 (2) (2006) 845-857 [41] M.B. de Azevedo, D.D. Santos, J.L.H. Faccini, J. Su, Experimental study of the falling film of liquid around a Taylor bubble, Int. J. Multiph. Flow 88 (2017) 133-141 [42] Z.S. Mao, A.E. Dukler, The motion of Taylor bubbles in vertical tubes. I. A numerical simulation for the shape and rise velocity of Taylor bubbles in stagnant and flowing liquid, J. Comput. Phys. 91 (1) (1990) 132-160 [43] Z.S. Mao, A.E. Dukler, The motion of Taylor bubbles in vertical tubes-II. Experimental data and simulations for laminar and turbulent flow, Chem. Eng. Sci. 46 (8) (1991) 2055-2064 [44] E. Roitberg, D. Barnea, L. Shemer, Elongated bubble shape in inclined air-water slug flow, Int. J. Multiph. Flow 85 (2016) 76-85 [45] M.B. de Azevedo, J.L.H. Faccini, J. Su, Experimental study of single Taylor bubbles rising in vertical and slightly deviated circular tubes, Exp. Therm. Fluid Sci. 116 (2020) 110109 [46] R.F.L. Cerqueira, E.E. Paladino, Experimental study of the flow structure around Taylor bubbles in the presence of dispersed bubbles, Int. J. Multiph. Flow 133 (2020) 103450 [47] L.X. Cheng, G. Ribatski, J.R. Thome, Two-phase flow patterns and flow-pattern maps:Fundamentals and applications, Appl. Mech. Rev. 61 (5) (2008) 050802 [48] D.J. Nicklin, J.O. Wilkes, J.F. Davidson, Two-phase flow in vertical tubes, Trans. Inst. Chem. Eng. 40 (1962) 61-68 [49] J.B.L.M. Campos, J.R.F.G. De Carvalho, An experimental study of the wake of gas slugs rising in liquids, J. Fluid Mech. 196 (1988) 27-37 [50] M.E. Shawkat, C.Y. Ching, M. Shoukri, Bubble and liquid turbulence characteristics of bubbly flow in a large diameter vertical pipe, Int. J. Multiph. Flow 34 (8) (2008) 767-785 [51] H.B. Jin, S.H. Yang, M. Wang, R.A. Williams, Measurement of gas holdup profiles in a gas liquid cocurrent bubble column using electrical resistance tomography, Flow Meas. Instrum. 18 (5-6) (2007) 191-196 [52] R. Babaei, B. Bonakdarpour, F. Ein-Mozaffari, The use of electrical resistance tomography for the characterization of gas holdup inside a bubble column bioreactor containing activated sludge, Chem. Eng. J. 268 (2015) 260-269 [53] T.J. Liu, S.G. Bankoff, Structure of air-water bubbly flow in a vertical pipe-II. Void fraction, bubble velocity and bubble size distribution, Int. J. Heat Mass Transf. 36 (4) (1993) 1061-1072 [54] O. Marfaing, M. Guingo, J. Laviéville, G. Bois, N. Méchitoua, N. Mérigoux, S. Mimouni, An analytical relation for the void fraction distribution in a fully developed bubbly flow in a vertical pipe, Chem. Eng. Sci. 152 (2016) 579-585 [55] V.E. Nakoryakov, O.N. Kashinsky, V.V. Randin, L.S. Timkin, Gas-liquid bubbly flow in vertical pipes, J. Fluids Eng. 118 (2) (1996) 377-382 [56] S. Mendez-Diaz, R. Zenit, S. Chiva, J.L. Muñoz-Cobo, S. Martinez-Martinez, A criterion for the transition from wall to core peak gas volume fraction distributions in bubbly flows, Int. J. Multiph. Flow 43 (2012) 56-61 [57] M. Lopez de Bertodano, R.T. Lahey Jr, O.C. Jones Jr, Phase distribution in bubbly two-phase flow in vertical ducts, Int. J. Multiph. Flow 20 (5) (1994) 805-818 [58] Y.C. Fu, Y. Liu, Experimental study of bubbly flow using image processing techniques, Nucl. Eng. Des. 310 (2016) 570-579 [59] S.K. Majumder, Hydrodynamics and Transport Processes of Inverse Bubbly Flow, Elsevier, Amsterdam, 2016 [60] O. Ronneberger, P. Fischer, T. Brox, U-Net:Convolutional Networks for Biomedical Image Segmentation, Springer International Publishing, New York, 2015 [61] C. Olerni, J.B. Jia, M. Wang, Measurement of air distribution and void fraction of an upwards air-water flow using electrical resistance tomography and a wire-mesh sensor, Meas. Sci. Technol. 24 (3) (2013) 035403 [62] P.L. Spedding, D.R. Spence, Prediction of holdup in two-phase flow, Int. J. Eng. Fluid Mech. 2 (1989) 109-118 [63] G.Y. Wang, M.H. Zhang, M. Ishii, Flow structure of bubbly to slug transition flow in a small pipe, Int. J. Heat Mass Transf. 147 (2020) 118943 |
[1] | Huiqi Wang, Jianpo Ren, Shihao Zhang, Jiayu Dai, Yue Niu, Ketao Shi, Qiuxiang Yin, Ling Zhou. Measurement and correlation of solubility of 9-fluorenone in 11 pure organic solvents from T = 283.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 235-241. |
[2] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[3] | Haixiang Liu, Jun Zhang, Chunlei Dong, Gang Zhu, Guanben Du, Shuduan Deng. Synthesis, performance and structure characterization of glyoxal-monomethylolurea-melamine (G-MMU-M) co-condensed resin [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 92-104. |
[4] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 135-145. |
[5] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[6] | Yaran Bu, Changchun Wu, Lili Zuo, Qian Chen. The calculation and optimal allocation of transmission capacity in natural gas networks with MINLP models [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 251-261. |
[7] | Junhao Wang, Shugang Ma, Peng Chen, Zhipeng Li, Zhengming Gao, J. J. Derksen. Mixing of miscible shear-thinning fluids in a lid-driven cavity [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 112-123. |
[8] | Weikai Ren, Runsong Dai, Ningde Jin. Modeling of liquid film thickness around Taylor bubbles rising in vertical stagnant and co-current slug flowing liquids [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 179-194. |
[9] | Hongwei Liang, Wenling Li, Zisheng Feng, Jianming Chen, Guangwen Chu, Yang Xiang. Numerical simulation of gas-liquid flow in the bubble column using Wray-Agarwal turbulence model coupled with population balance model [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 205-223. |
[10] | Yun-Zhang Liu, Lu-Yao Zhang, Dan He, Li-Zhen Chen, Zi-Shuai Xu, Jian-Long Wang. Solubility measurement, correlation and thermodynamic properties of 2, 3, 4-trichloro-1, 5-dinitrobenzene in fifteen mono-solvents at temperatures from 278.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 224-233. |
[11] | Danlei Chen, Yiqing Luo, Xigang Yuan. Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 244-255. |
[12] | Lusheng Zhai, Bo Xu, Haiyan Xia, Ningde Jin. Simultaneous measurement of velocity profile and liquid film thickness in horizontal gas-liquid slug flow by using ultrasonic Doppler method [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 323-340. |
[13] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 10-16. |
[14] | Li Xia, Yule Pan, Tingting Zhao, Xiaoyan Sun, Shaohui Tao, Yushi Chen, Shuguang Xiang. Estimating heat capacities of liquid organic compounds based on elements and chemical bonds contribution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 30-38. |
[15] | Xiongzhuo Zhu, Dali Gao, Chong Yang, Chunjie Yang. A blast furnace fault monitoring algorithm with low false alarm rate: Ensemble of greedy dynamic principal component analysis-Gaussian mixture model [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 151-161. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||