Chinese Journal of Chemical Engineering ›› 2023, Vol. 53 ›› Issue (1): 73-82.DOI: 10.1016/j.cjche.2022.02.022
Previous Articles Next Articles
Yufei Wang, Zihao Chen, Rui Chen, Jie Wei
Received:
2021-09-29
Revised:
2022-02-13
Online:
2023-04-08
Published:
2023-01-28
Contact:
Jie Wei,E-mail:weij@mail.buct.edu.cn
Supported by:
Yufei Wang, Zihao Chen, Rui Chen, Jie Wei
通讯作者:
Jie Wei,E-mail:weij@mail.buct.edu.cn
基金资助:
Yufei Wang, Zihao Chen, Rui Chen, Jie Wei. A self-healing and conductive ionic hydrogel based on polysaccharides for flexible sensors[J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 73-82.
Yufei Wang, Zihao Chen, Rui Chen, Jie Wei. A self-healing and conductive ionic hydrogel based on polysaccharides for flexible sensors[J]. 中国化学工程学报, 2023, 53(1): 73-82.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.02.022
[1] J.Y. Nie, B.Y. Pei, Z.K. Wang, Q.L. Hu, Construction of ordered structure in polysaccharide hydrogel: A review, Carbohydr. Polym. 205 (2019) 225–235. [2] Y. Cheng, K. Ren, C. Huang, J. Wei, Self-healing graphene oxide-based nanocomposite hydrogels serve as near-infrared light-driven valves, Sens. Actuat. B Chem. 298 (2019) 126908. [3] Y. Cheng, K. Ren, D. Yang, J. Wei, Bilayer-type fluorescence hydrogels with intelligent response serve as temperature/pH driven soft actuators, Sens. Actuat. B Chem. 255 (2018) 3117–3126. [4] C. Huang, Y. Cheng, Z.W. Gao, H.B. Zhang, J. Wei, Portable label-free inverse opal photonic hydrogel particles serve as facile pesticides colorimetric monitoring, Sens. Actuat. B Chem. 273 (2018) 1705–1712. [5] V. Yesilyurt, M.J. Webber, E.A. Appel, C. Godwin, R. Langer, D.G. Anderson, Injectable self-healing glucose-responsive hydrogels with pH-regulated mechanical properties, Adv. Mater. 28 (1) (2016) 86–91. [6] Y.F. Wang, Z.H. Chen, N.S. Li, H.B. Zhang, J. Wei, Programmable photo-responsive self-healing hydrogels for optical information coding and encryption, Eur. Polym. J. 166 (2022) 111025. [7] Y.S. Li, X. Wang, Y. Wei, L. Tao, Chitosan-based self-healing hydrogel for bioapplications, Chin. Chem. Lett. 28 (11) (2017) 2053–2057. [8] Z.Y. Liu, Y. Wang, Y.Y. Ren, G.Q. Jin, C.C. Zhang, W. Chen, F. Yan, Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper, Mater. Horiz. 7 (3) (2020) 919–927. [9] Y. Cheng, C. Huang, D. Yang, K. Ren, J. Wei, Bilayer hydrogel mixed composites that respond to multiple stimuli for environmental sensing and underwater actuation, J. Mater. Chem. B 6 (48) (2018) 8170–8179. [10] J.J. Wang, Q. Zhang, X.X. Ji, L.B. Liu, Highly stretchable, compressible, adhesive, conductive self-healing composite hydrogels with sensor capacity, Chin. J. Polym. Sci. 38 (11) (2020) 1221–1229. [11] K. Ren, Y. Cheng, C. Huang, R. Chen, Z. Wang, J. Wei, Self-healing conductive hydrogels based on alginate, gelatin and polypyrrole serve as a repairable circuit and a mechanical sensor, J. Mater. Chem. B 7 (37) (2019) 5704–5712. [12] Q.B. Guan, G.H. Lin, Y.Z. Gong, J.F. Wang, W.Y. Tan, D.Q. Bao, Y.N. Liu, Z.W. You, X.H. Sun, Z. Wen, Y. Pan, Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics, J. Mater. Chem. A 7 (23) (2019) 13948–13955. [13] Y.T. Wang, Q. Chang, R.X. Zhan, K.G. Xu, Y. Wang, X.Y. Zhang, B.Y. Li, G.X. Luo, M. Xing, W. Zhong, Tough but self-healing and 3D printable hydrogels for E-skin, E-noses and laser controlled actuators, J. Mater. Chem. A 7 (43) (2019) 24814–24829. [14] V.K. Rao, N. Shauloff, X.M. Sui, H.D. Wagner, R. Jelinek, Polydiacetylene hydrogel self-healing capacitive strain sensor, J. Mater. Chem. C 8 (18) (2020) 6034–6041. [15] C. Jiang, Y.S. Li, H. Wang, D.S. Chen, Y.Q. Wen, A portable visual capillary sensor based on functional DNA crosslinked hydrogel for point-of-care detection of lead ion, Sens. Actuat. B Chem. 307 (2020) 127625. [16] W. Li, C. Jiang, S. Lu, F. Wang, Z.J. Zhang, T.W. Wei, Y.H. Chen, J. Qiang, Z.Y. Yu, X.Q. Chen, A hydrogel microsphere-based sensor for dual and highly selective detection of Al3+ and Hg2+, Sens. Actuat. B Chem. 321 (2020) 128490. [17] X.B. Ma, R. Yang, K.P.C. Sekhar, B. Chi, Injectable hyaluronic acid/poly(γ-glutamic acid) hydrogel with step-by-step tunable properties for soft tissue engineering, Chin. J. Polym. Sci. 39 (8) (2021) 957–965. [18] C.J. Liu, X.L. Guo, C.P. Ruan, H.L. Hu, B.P. Jiang, H. Liang, X.C. Shen, An injectable thermosensitive photothermal-network hydrogel for near-infrared-triggered drug delivery and synergistic photothermal-chemotherapy, Acta Biomater. 96 (2019) 281–294. [19] F.Y. Ding, S.P. Wu, S.S. Wang, Y. Xiong, Y. Li, B. Li, H.B. Deng, Y.M. Du, L. Xiao, X.W. Shi, A dynamic and self-crosslinked polysaccharide hydrogel with autonomous self-healing ability, Soft Matter 11 (20) (2015) 3971–3976. [20] Y. Liu, L.J. Duan, M.J. Kim, J.H. Kim, D.J. Chung, In situ sodium alginate-hyaluronic acid hydrogel coating method for clinical applications, Macromol. Res. 22 (3) (2014) 240–247. [21] Y.Q. Wang, Y.N. Xue, S.R. Li, X.H. Zhang, H.X. Fei, X.G. Wu, S.B. Sang, X.N. Li, M. Wei, W.Y. Chen, Nanocomposite carbon dots/PAM fluorescent hydrogels and their mechanical properties, J. Polym. Res. 24 (12) (2017) 1–7. [22] P. Reutenauer, E. Buhler, P.J. Boul, S.J. Candau, J.M. Lehn, Room temperature dynamic polymers based on Diels-Alder chemistry, Chemistry 15 (8) (2009) 1893–1900. [23] W.W. Hou, N.N. Sheng, X.H. Zhang, Z.H. Luan, P.F. Qi, M. Lin, Y.Q. Tan, Y.Z. Xia, Y.H. Li, K.Y. Sui, Design of injectable agar/NaCl/polyacrylamide ionic hydrogels for high performance strain sensors, Carbohydr. Polym. 211 (2019) 322–328. [24] K. Lei, Z. Li, D.D. Zhu, C.Y. Sun, Y.L. Sun, C.C. Yang, Z. Zheng, X.L. Wang, Polysaccharide-based recoverable double-network hydrogel with high strength and self-healing properties, J. Mater. Chem. B 8 (4) (2020) 794–802. [25] M. Wu, B. Johannesson, M. Geiker, A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material, Constr. Build. Mater. 28 (1) (2012) 571–583. [26] Y. Yang, M.W. Urban, Self-healing polymeric materials, Chem. Soc. Rev. 42 (17) (2013) 7446. [27] H.L. Huang, G. Ye, C.X. Qian, E. Schlangen, Self-healing in cementitious materials: Materials, methods and service conditions, Mater. Des. 92 (2016) 499–511. [28] H.L. Qin, T. Zhang, N. Li, H.P. Cong, S.H. Yu, Anisotropic and self-healing hydrogels with multi-responsive actuating capability, Nat. Commun. 10 (1) (2019) 2202. [29] M.M. Kang, S.L. Liu, O. Oderinde, F. Yao, G.D. Fu, Z.H. Zhang, Template method for dual network self-healing hydrogel with conductive property, Mater. Des. 148 (2018) 96–103. [30] M. . Roberts, M. . Hanson, A. . Massey, E. . Karren, P. . Kiser, Dynamically restructuring hydrogel networks formed with reversible covalent crosslinks, Adv. Mater. 19 (18) (2007) 2503–2507. [31] L. Saunders, P.X. Ma, Self-healing supramolecular hydrogels for tissue engineering applications, Macromol. Biosci. 19 (1) (2019) e1800313. [32] S.Z. Li, M.J. Pei, T.T. Wan, H.J. Yang, S.J. Gu, Y.Z. Tao, X. Liu, Y.S. Zhou, W.L. Xu, P. Xiao, Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials, Carbohydr. Polym. 250 (2020) 116922. [33] Z. Wei, J.H. Yang, Z.Q. Liu, F. Xu, J.X. Zhou, M. Zrínyi, Y. Osada, Y.M. Chen, Novel biocompatible polysaccharide-based self-healing hydrogel, Adv. Funct. Mater. 25 (9) (2015) 1352–1359. [34] J. Xu, D.G. Yang, W.J. Li, Y. Gao, H.B. Chen, H.M. Li, Phenylboronate-diol crosslinked polymer gels with reversible Sol-gel transition, Polymer 52 (19) (2011) 4268–4276. [35] X. Zhang, S.T. Jiang, T.F. Yan, X.T. Fan, F. Li, X.D. Yang, B. Ren, J.Y. Xu, J.Q. Liu, Injectable and fast self-healing protein hydrogels, Soft Matter 15 (38) (2019) 7583–7589. [36] Z. Wei, J.H. Yang, X.J. Du, F. Xu, M. Zrinyi, Y. Osada, F. Li, Y.M. Chen, Dextran-based self-healing hydrogels formed by reversible Diels-alder reaction under physiological conditions, Macromol. Rapid Commun. 34 (18) (2013) 1464–1470. [37] H.J. Zhang, H.S. Xia, Y. Zhao, Poly(vinyl alcohol) Hydrogel Can Autonomously Self-Heal, ACS Macro Lett. 1 (11) (2012) 1233–1236. [38] I. Hussain, S.M. Sayed, S.L. Liu, O. Oderinde, F. Yao, G.D. Fu, Glycogen-based self-healing hydrogels with ultra-stretchable, flexible, and enhanced mechanical properties via sacrificial bond interactions, Int. J. Biol. Macromol. 117 (2018) 648–658. [39] D.L. Zhao, Q. Tang, Q. Zhou, K. Peng, H.Y. Yang, X.Y. Zhang, A photo-degradable injectable self-healing hydrogel based on star poly(ethylene glycol)-b-polypeptide as a potential pharmaceuticals delivery carrier, Soft Matter 14 (36) (2018) 7420–7428. [40] Y.X. Liu, M. Zhou, Y. Liu, X. Han, X.Z. Zhang, S.M. Liu, Host-guest interaction-mediated fabrication of aggregation-induced emission supramolecular hydrogel for use as aqueous light-harvesting systems, Supramol. Chem. 32 (8) (2020) 445–451. [41] F.Y. Ding, X.W. Shi, S. Wu, X.H. Liu, H.B. Deng, Y.M. Du, H.B. Li, Flexible polysaccharide hydrogel with pH-regulated recovery of self-healing and mechanical properties, Macromol. Mater. Eng. 302 (11) (2017) 1700221. [42] S.Q. Chang, B.X. Wang, Y.Z. Liu, Z. Li, X.D. Hu, X.H. Zhang, H.Q. Zhang, Radiation-assistant preparation of highly conductive, transparent and self-healing hydrogels with triple-network structure, Polymer 188 (2020) 122156. [43] B. Guo, Z. Ma, L.J. Pan, Y. Shi, Properties of conductive polymer hydrogels and their application in sensors, J. Polym. Sci. B Polym. Phys. 57 (23) (2019) 1606–1621. [44] Q.F. Rong, W.W. Lei, M.J. Liu, Conductive hydrogels as smart materials for flexible electronic devices, Chemistry 24 (64) (2018) 16930–16943. [45] J.J. Yin, Q.Q. Liu, J.X. Zhou, L.X. Zhang, Q.R. Zhang, R.D. Rao, S.F. Liu, T.F. Jiao, Self-assembled functional components-doped conductive polypyrrole composite hydrogels with enhanced electrochemical performances, RSC Adv. 10 (18) (2020) 10546–10551. [46] H. Peng, Y.Y. Lv, G.G. Wei, J.Z. Zhou, X.J. Gao, K.J. Sun, G.F. Ma, Z.Q. Lei, A flexible and self-healing hydrogel electrolyte for smart supercapacitor, J. Power Sources 431 (2019) 210–219. [47] P. Chakraborty, T. Guterman, N. Adadi, M. Yadid, T. Brosh, L. Adler-Abramovich, T. Dvir, E. Gazit, A self-healing, all-organic, conducting, composite peptide hydrogel as pressure sensor and electrogenic cell soft substrate, ACS Nano 13 (1) (2019) 163–175. [48] M. Ginting, S.P. Pasaribu, I. Masmur, J. Kaban, Hestina, Self-healing composite hydrogel with antibacterial and reversible restorability conductive properties, RSC Adv. 10 (9) (2020) 5050–5057. [49] S. Pairatwachapun, N. Paradee, A. Sirivat, Controlled release of acetylsalicylic acid from polythiophene/carrageenan hydrogel via electrical stimulation, Carbohydr. Polym. 137 (2016) 214–221. [50] A.R. Spencer, A. Primbetova, A.N. Koppes, R.A. Koppes, H. Fenniri, N. Annabi, Electroconductive gelatin methacryloyl-PEDOT: PSS composite hydrogels: Design, synthesis, and properties, ACS Biomater. Sci. Eng. 4 (5) (2018) 1558–1567. [51] T. Nezakati, A. Seifalian, A. Tan, A.M. Seifalian, Conductive polymers: Opportunities and challenges in biomedical applications, Chem. Rev. 118 (14) (2018) 6766–6843. [52] L.P. Yue, X.Y. Zhang, W.D. Li, Y. Tang, Y.P. Bai, Quickly self-healing hydrogel at room temperature with high conductivity synthesized through simple free radical polymerization, J. Appl. Polym. Sci. 136 (18) (2019) 47379. [53] Z.H. Qin, X. Sun, Q.Y. Yu, H.T. Zhang, X.J. Wu, M.M. Yao, W.W. Liu, F.L. Yao, J.J. Li, Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors, ACS Appl. Mater. Interfaces 12 (4) (2020) 4944–4953. [54] C. Lim, Y. Shin, J. Jung, J.H. Kim, S. Lee, D.H. Kim, Stretchable conductive nanocomposite based on alginate hydrogel and silver nanowires for wearable electronics, APL Mater. 7 (3) (2018) 031502. [55] J.Q. Zhang, L.J. Wan, Y. Gao, X.L. Fang, T. Lu, L.K. Pan, F.Z. Xuan, Highly stretchable and self-healable MXene/polyvinyl alcohol hydrogel electrode for wearable capacitive electronic skin, Adv. Electron. Mater. 5 (7) (2019) 1900285. [56] B.G. Li, C. Wu, C.Y. Wang, Z.Y. Luo, J.P. Cao, Fabrication of tough, self-recoverable, and electrically conductive hydrogels by in situ reduction of poly(acrylic acid) grafted graphene oxide in polyacrylamide hydrogel matrix, J. Appl. Polym. Sci. 137 (23) (2020) 48781. [57] S.J. Peng, X.Z. Jiang, X.T. Xiang, K. Chen, G.Q. Chen, X.C. Jiang, L.X. Hou, High-performance and flexible solid-state supercapacitors based on high toughness and thermoplastic poly(vinyl alcohol)/NaCl/glycerol supramolecular gel polymer electrolyte, Electrochimica Acta 324 (2019) 134874. [58] J.J. Li, H.L. Wei, Y. Peng, L.F. Geng, L.M. Zhu, X.Y. Cao, C.S. Liu, H. Pang, A multifunctional self-healing G-PyB/KCl hydrogel: Smart conductive, rapid room-temperature phase-selective gelation, and ultrasensitive detection of alpha-fetoprotein, Chem. Commun. 55 (55) (2019) 7922–7925. [59] L.Y. Fang, Z.F. Cai, Z.Q. Ding, T.Y. Chen, J.C. Zhang, F.B. Chen, J.Y. Shen, F. Chen, R. Li, X.C. Zhou, Z. Xie, Skin-inspired surface-microstructured tough hydrogel electrolytes for stretchable supercapacitors, ACS Appl. Mater. Interfaces 11 (24) (2019) 21895–21903. [60] B.W. Yang, W.Z. Yuan, Highly stretchable and transparent double-network hydrogel ionic conductors as flexible thermal-mechanical dual sensors and electroluminescent devices, ACS Appl. Mater. Interfaces 11 (18) (2019) 16765–16775. [61] S.J. Han, C.R. Liu, X.Y. Lin, J.W. Zheng, J. Wu, C. Liu, Dual conductive network hydrogel for a highly conductive, self-healing, anti-freezing, and non-drying strain sensor, ACS Appl. Polym. Mater. 2 (2) (2020) 996–1005. [62] Q.H. Wang, X.F. Pan, J.J. Guo, L.L. Huang, L.H. Chen, X.J. Ma, S.L. Cao, Y.H. Ni, Lignin and cellulose derivatives-induced hydrogel with asymmetrical adhesion, strength, and electriferous properties for wearable bioelectrodes and self-powered sensors, Chem. Eng. J. 414 (2021) 128903. [63] W.H. Zheng, Y.Y. Li, L.J. Xu, Y.D. Huang, Z.X. Jiang, B. Li, Highly stretchable, healable, sensitive double-network conductive hydrogel for wearable sensor, Polymer 211 (2020) 123095. |
[1] | Abdelgadir Bashir Banaga, Yan-Bin Li, Zhi-Hao Li, Bao-Chang Sun, Guang-Wen Chu. Experimental investigation of the mixing efficiency via intensity of segregation along axial direction of a rotating bar reactor [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 153-159. |
[2] | Hae-Kyun Park, Dong-Hyuk Park, Bum-Jin Chung. Influence of the electrolyte conductivity on the critical current density and the breakdown voltage [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 169-175. |
[3] | Jianhui Zhou, Guohao Du, Jianfeng Hu, Xin Lai, Shan Liu, Zhengguo Zhang. The establishment of Boron nitride@sodium alginate foam/polyethyleneglycol composite phase change materials with high thermal conductivity, shape stability, and reusability [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 11-21. |
[4] | Hongzhi Zhang, Huiyan Guo, Yang Liu, Chengxiang Shi, Lun Pan, Xiangwen Zhang, Ji-Jun Zou. Thixotropic composite hydrogels based on agarose and inorganic hybrid gellants [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 240-247. |
[5] | Jingsi Cui, Huanxi Xu, Yanfeng Ding, Jingjing Tian, Xu Zhang, Guanping Jin. Recovery of lithium using H4Mn3.5Ti1.5O12/reduced graphene oxide/polyacrylamide composite hydrogel from brine by Ads-ESIX process [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 20-28. |
[6] | Mingxia Tian, Aili Wang, Hengbo Yin. Evolution of copper nanowires through coalescing of copper nanoparticles induced by aliphatic amines and their electrical conductivities in polyester films [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 284-291. |
[7] | Shiqi Yang, Zhentao Wang, Qian Kong, Bin Li, Junfeng Wang. Visualization on electrified micro-jet instability from Taylor cone in electrohydrodynamic atomization [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 456-465. |
[8] | Q. Yang, A. Wang, J. Luo, W. Tang. Improving ionic conductivity of polymer-based solid electrolytes for lithium metal batteries [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 202-215. |
[9] | Shabnam Ghahremanian, Abbas Abbassi, Zohreh Mansoori, Davood Toghraie. Effect of copper nanoparticles on thermal behavior of two-phase argon-copper nanofluid flow in rough nanochannels with focusing on the interface properties and heat transfer using molecular dynamics simulation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 344-350. |
[10] | Yang Liu, Yangbo Deng, Junrui Shi, Rujie Xiao, Houping Li. Pore-level numerical simulation of methane-air combustion in a simplified two-layer porous burner [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 87-96. |
[11] | Dan Zeng, Shihong Shen, Daidi Fan. Molecular design, synthesis strategies and recent advances of hydrogels for wound dressing applications [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 308-320. |
[12] | Yiya Wang, Tao Sun, Yinzhu Wang, Hao Wu, Yan Fang, Jiangfeng Ma, Min Jiang. Production and characterization of insoluble α-1,3-linked glucan and soluble α-1,6-linked dextran from Leuconostoc pseudomesenteroides G29 [J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 211-218. |
[13] | Joynal Abedin, Shamim Mahbub, Mohammad Majibur Rahman, Anamul Hoque, Dileep Kumar, Javed Masood Khan, Ahmed M. El-Sherbeeny. Interaction of tetradecyltrimethylammonium bromide with bovine serum albumin in different compositions: Effect of temperatures and electrolytes/urea [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 279-287. |
[14] | Yahui Wang, Kaimin Feng, Liming Ding, Lihua Wang, Xutong Han. Influence of solvent on ion conductivity of polybenzimidazole proton exchange membranes for vanadium redox flow batteries [J]. Chinese Journal of Chemical Engineering, 2020, 28(6): 1701-1708. |
[15] | Guohao Du, Jianfeng Hu, Jianhui Zhou, Guangwu Wang, Shengli Guan, Hailing Liu, Man Geng, Chuang Lü, Yaoqiang Ming, Jinqing Qu. The study on the mechanical properties of PU/MF double shell selfhealing microcapsules [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1459-1473. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||