[1] M. Horn, J. MacLeod, M.N. Liu, J. Webb, N. Motta, Supercapacitors: a new source of power for electric cars? Econ. Anal. Policy 61 (2019) 93–103. [2] P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices, Nat. Mater. 19 (11) (2020) 1151–1163. [3] L.Y. Liu, P.L. Taberna, B. Dunn, P. Simon, Future directions for electrochemical capacitors, ACS Energy Lett. 6 (12) (2021) 4311–4316. [4] A. Afif, S.M. Rahman, A. Tasfiah Azad, J. Zaini, M.A. Islan, A.K. Azad, Advanced materials and technologies for hybrid supercapacitors for energy storage - A review, J. Energy Storage 25 (2019) 100852. [5] G.P. Wang, L. Zhang, J.J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2) (2012) 797–828. [6] P.P. Li, D.Z. Zhang, Y.H. Xu, C.H. Ni, G. Shi, X.X. Sang, Nitrogen-doped hierarchical porous carbon from polyaniline/silica self-aggregates for supercapacitor, Chin. J. Chem. Eng. 27 (3) (2019) 709–716. [7] Y. Zhang, H. Feng, X.B. Wu, L.Z. Wang, A.Q. Zhang, T.C. Xia, H.C. Dong, X.F. Li, L.S. Zhang, Progress of electrochemical capacitor electrode materials: a review, Int. J. Hydrog. Energy 34 (11) (2009) 4889–4899. [8] Y.T. Yan, J.Q. Liu, K.K. Huang, J.L. Qi, L. Qiao, X.H. Zheng, W. Cai, A fast micro–nano liquid layer induced construction of scaled-up oxyhydroxide based electrocatalysts for alkaline water splitting, J. Mater. Chem. A 9 (47) (2021) 26777–26787. [9] Y.T. Yan, J.H. Lin, J. Cao, S. Guo, X.H. Zheng, J.C. Feng, J.L. Qi, Activating and optimizing the activity of NiCoP nanosheets for electrocatalytic alkaline water splitting through the V doping effect enhanced by P vacancies, J. Mater. Chem. A 7 (42) (2019) 24486–24492. [10] H.H. Zhang, J. Wei, Y. Yan, Q.J. Guo, L.Q. Xie, Z.C. Yang, J. He, W. Qi, Z.S. Cao, X.H. Zhao, P. Pan, H.Y. Li, K.L. Zhang, J.S. Zhao, X. Li, P. Zhang, K.W. Shah, Facile and scalable fabrication of MnO2 nanocrystallines and enhanced electrochemical performance of MnO2/MoS2 inner heterojunction structure for supercapacitor application, J. Power Sources 450 (2020) 227616. [11] Z.D. Li, F. Wang, X.D. Wang, Hierarchical branched vanadium oxide Nanorod@Si nanowire architecture for high performance supercapacitors, Small 13 (1) (2017) 2017Jan;13(1). [12] X.H. Xia, J.P. Tu, Y.J. Mai, X.L. Wang, C.D. Gu, X.B. Zhao, Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance, J. Mater. Chem. 21 (25) (2011) 9319. [13] J.T. Zhang, J.Z. Ma, L.L. Zhang, P.Z. Guo, J.W. Jiang, X.S. Zhao, Template synthesis of tubular ruthenium oxides for supercapacitor applications, J. Phys. Chem. C 114 (32) (2010) 13608–13613. [14] Y.K. Wang, F. Chen, Z.X. Liu, Z.J. Tang, Q. Yang, Y. Zhao, S.Y. Du, Q. Chen, C.Y. Zhi, A highly elastic and reversibly stretchable all-polymer supercapacitor, Angew. Chem. Int. Ed. 58 (44) (2019) 15707–15711. [15] S. Trasatti, G. Buzzanca, Ruthenium dioxide: a new interesting electrode material. Solid state structure and electrochemical behaviour, J. Electroanal. Chem. Interfacial Electrochem. 29 (2) (1971) A1–A5. [16] D. Majumdar, T. Maiyalagan, Z.Q. Jiang, Recent progress in ruthenium oxide-based composites for supercapacitor applications, ChemElectroChem 6 (17) (2019) 4343–4372. [17] P.F. Wang, H. Liu, Y.X. Xu, Y.F. Chen, J. Yang, Q.Q. Tan, Supported ultrafine ruthenium oxides with specific capacitance up to 1099 F g-1 for a supercapacitor, Electrochimica Acta 194 (2016) 211–218. [18] H.T. Fang, M. Liu, D.W. Wang, X.H. Ren, X. Sun, Fabrication and supercapacitive properties of a thick electrode of carbon nanotube-RuO2 core-shell hybrid material with a high RuO2 loading, Nano Energy 2 (6) (2013) 1232–1241. [19] D. Hong, S. Yim, RuO2 thin films electrodeposited on polystyrene nanosphere arrays: growth mechanism and application to supercapacitor electrodes, Langmuir 34 (14) (2018) 4249–4254. [20] S.M. Zhang, J.W. Wu, J.T. Wang, W.M. Qiao, D.H. Long, L.C. Ling, Constructing T-Nb2O5@Carbon hollow core-shell nanostructures for high-rate hybrid supercapacitor, J. Power Sources 396 (2018) 88–94. [21] X.J. Wang, J. Feng, Y.C. Bai, Q. Zhang, Y.D. Yin, Synthesis, properties, and applications of hollow micro-/ nanostructures, Chem. Rev. 116 (18) (2016) 10983–11060. [22] J.L. Qi, Y.T. Yan, Y.F. Cai, J. Cao, J.C. Feng, Nanoarchitectured design of vertical-standing arrays for supercapacitors: progress, challenges, and perspectives, Adv. Funct. Mater. 31 (3) (2021) 2006030. [23] J. Du, L. Liu, Y.F. Yu, Y. Zhang, A.B. Chen, “Dissolution-reassembly” for N-doped hollow micro/meso-carbon spheres with high supercapacitor performance, Chin. Chem. Lett. 30 (7) (2019) 1423–1427. [24] J. Du, L. Liu, Y.F. Yu, Y. Zhang, H.J. Lv, A.B. Chen, Interpolation strategy for monodisperse hollow mesoporous carbon spheres in high performance supercapacitor, J. Power Sources 434 (2019) 226720. [25] X.D. Liu, M.M. Vadiyar, J.K. Oh, Z.B. Ye, Designing ultrasmall carbon nanospheres with tailored sizes and textural properties for high-rate high-energy supercapacitors, ACS Appl. Mater. Interfaces 13 (28) (2021) 32916–32929. [26] W.W. Qiu, J.L. Zhao, X.D. Song, Q. Mao, S.Z. Ren, C. Hao, Y.H. Xiao, One-step activation synthesized hierarchical porous carbon spheres from resorcinol–thiourea–formaldehyde for electrochemical capacitors, Ind. Eng. Chem. Res. 59 (1) (2020) 226–235. [27] C.Z. Yuan, Y.F. Jiang, Z.W. Zhao, S.J. Zhao, X. Zhou, T.Y. Cheang, A.W. Xu, Molecule-assisted synthesis of highly dispersed ultrasmall RuO2 nanoparticles on nitrogen-doped carbon matrix as ultraefficient bifunctional electrocatalysts for overall water splitting, ACS Sustain. Chem. Eng. 6 (9) (2018) 11529-11535. [28] Z.H. Yu, N. Ji, J. Xiong, X.Y. Li, R. Zhang, L.D. Zhang, X.B. Lu, Ruthenium-nanoparticle-loaded hollow carbon spheres as nanoreactors for hydrogenation of levulinic acid: explicitly recognizing the void-confinement effect, Angewandte Chemie Int. Ed. 60 (38) (2021) 20786–20794. [29] M.M. Shi, D. Bao, S.J. Li, B.R. Wulan, J.M. Yan, Q. Jiang, Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution, Adv. Energy Mater. 8 (21) (2018) 1800124. [30] P. Zhang, X.F. Liu, H.W. He, Y.Z. Peng, Y.H. Wu, Engineering RuO2 on CuCO2O4/CuO nanoneedles as multifunctional electrodes for the hybrid supercapacitors and water oxidation catalysis, J. Alloys Compd. 832 (2020) 154962. [31] Y.L. Dang, T.L. Wu, H.Y. Tan, J.L. Wang, C. Cui, P. Kerns, W. Zhao, L. Posada, L.Y. Wen, S.L. Suib, Partially reduced Ru/RuO2 composites as efficient and pH-universal electrocatalysts for hydrogen evolution, Energy Environ. Sci. 14 (10) (2021) 5433–5443. [32] Z.Y. Zhou, L. Miao, H. Duan, Z.W. Wang, Y.K. Lv, W. Xiong, D.Z. Zhu, L.C. Li, M.X. Liu, L.H. Gan, Highly active N, O-doped hierarchical porous carbons for high-energy supercapacitors, Chin. Chem. Lett. 31 (5) (2020) 1226–1230. [33] M. Mansuer, L. Miao, D.Z. Zhu, H. Duan, Y.K. Lv, L.C. Li, M.X. Liu, L.H. Gan, Facile construction of highly redox active carbons with regular micropores and rod-like morphology towards high-energy supercapacitors, Mater. Chem. Front. 5 (7) (2021) 3061–3072. [34] Z.K. Peng, H.Y. Wang, L.L. Zhou, Y.B. Wang, J. Gao, G.J. Liu, S.A.T. Redfern, X.L. Feng, S.Y. Lu, B.J. Li, Z.Y. Liu, Hollow carbon shells enhanced by confined ruthenium as cost-efficient and superior catalysts for the alkaline hydrogen evolution reaction, J. Mater. Chem. A 7 (12) (2019) 6676–6685. [35] J.J. Yan, L. Miao, H. Duan, D.Z. Zhu, Y.K. Lv, W. Xiong, L.C. Li, L.H. Gan, M.X. Liu, Core-shell hierarchical porous carbon spheres with N/O doping for efficient energy storage, Electrochimica Acta 358 (2020) 136899. [36] Y. Yang, S.Y. Zhang, L. Gu, S. Shao, W. Li, D.H. Zeng, F. Yang, S.J. Hao, Stable yolk-structured catalysts towards aqueous levulinic acid hydrogenation within a single Ru nanoparticle anchored inside the mesoporous shell of hollow carbon spheres, J. Colloid Interface Sci. 576 (2020) 394–403. [37] X.F. Bing, Y.J. Wei, M. Wang, S. Xu, D.H. Long, J.T. Wang, W.M. Qiao, L.C. Ling, Template-free synthesis of nitrogen-doped hierarchical porous carbons for CO2 adsorption and supercapacitor electrodes, J. Colloid Interface Sci. 488 (2017) 207–217. [38] J.R. Zhang, D.C. Jiang, B. Chen, J.J. Zhu, L.P. Jiang, H.Q. Fang, Preparation and electrochemistry of hydrous ruthenium oxide/active carbon electrode materials for supercapacitor, J. Electrochem. Soc. 148 (12) (2001) A1362. [39] B. Asbani, K. Robert, P. Roussel, T. Brousse, C. Lethien, Asymmetric micro-supercapacitors based on electrodeposited RuO2 and sputtered VN films, Energy Storage Mater. 37 (2021) 207–214. [40] H.L. Wang, Y.Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, H.J. Dai, Advanced asymmetrical supercapacitors based on graphene hybrid materials, Nano Res. 4 (8) (2011) 729–736. [41] Y. Guo, Z.X. Zhu, Y.Q. Chen, H. He, X. Li, T.H. Qin, Y.Y. Wang, High-performance supercapacitors of ruthenium-based nanohybrid compounds, J. Alloys Compd. 842 (2020) 155798. [42] T. Das, B. Verma, Effect of ruthenium based catalyst loading on the electrochemical properties of carbon xerogel, Chem. Phys. Lett. 739 (2020) 136947. [43] J.T. Zhang, J.W. Jiang, H.L. Li, X.S. Zhao, A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes, Energy Environ. Sci. 4 (10) (2011) 4009. [44] N.G. Saykar, A. Phatangare, I. Banerjee, V.N. Bhoraskar, A.K. Ray, S.K. Mahapatra, Electron beam induced synthesis of Ru-rGO and its super capacitive behavior, 2D Mater. 6 (4) (2019) 045030. [45] S.Y. Yang, J. Yu, T.T. Jiang, L.X. Zhu, X.L. Xu, High performance symmetric solid state supercapacitor based on electrode of RuxNi1-xCO2O4 grown on nickel foam, J. Alloys Compd. 764 (2018) 767–775. |