[1] M. Nikravan, A.A. Ramezanianpour, R. Maknoon, Study on physiochemical properties and leaching behavior of residual ash fractions from a municipal solid waste incinerator (MSWI) plant, J. Environ. Manage. 260 (2020) 110042. https://doi.org/10.1016/j.jenvman.2019.110042. [2] H.A. Arafat, K. Jijakli, A. Ahsan, Environmental performance and energy recovery potential of five processes for municipal solid waste treatment, J. Clean. Prod. 105 (2015) 233–240. https://doi.org/10.1016/j.jclepro.2013.11.071. [3] Z. Bao, W. Lu, Developing efficient circularity for construction and demolition waste management in fast emerging economies: Lessons learned from Shenzhen, China, Sci. Total Environ. 724 (2020) 138264. https://doi.org/10.1016/j.scitotenv.2020.138264. [4] P. Zhou, D. Guo, T. Chai, Data-driven predictive control of molten iron quality in blast furnace ironmaking using multi-output LS-SVR based inverse system identification, Neurocomputing. 308 (2018) 101–110. https://doi.org/10.1016/j.neucom.2018.04.060. [5] X. Chen, W. Zhong, C. Jiang, Z. Li, X. Peng, H. Cheng, Key performance index estimation based on ensemble locally weighted partial least squares and its application on industrial nonlinear processes, Chemom. Intell. Lab. Syst. 203 (2020) 104031. https://doi.org/10.1016/j.chemolab.2020.104031. [6] Y.G. Li, W.H. Gui, C.H. Yang, Y.F. Xie, Soft sensor and expert control for blending and digestion process in alumina metallurgical industry, J. Process Control. 23 (2013) 1012–1021. https://doi.org/10.1016/j.jprocont.2013.06.002. [7] J. Song, C.E. Romero, Z. Yao, B. He, Improved artificial bee colony-based optimization of boiler combustion considering NOX emissions, heat rate and fly ash recycling for on-line applications, Fuel. 172 (2016) 20–28. [8] C. Wang, Y. Liu, S. Zheng, A. Jiang, Optimizing combustion of coal fired boilers for reducing NOx emission using Gaussian Process, Energy. 153 (2018) 149–158. https://doi.org/10.1016/j.energy.2018.01.003. [9] S.M. Safdarnejad, J.F. Tuttle, K.M. Powell, Dynamic modeling and optimization of a coal-fired utility boiler to forecast and minimize NOx and CO emissions simultaneously, Comput. Chem. Eng. 124 (2019) 62–79. https://doi.org/10.1016/j.compchemeng.2019.02.001. [10] G. Wang, O.I. Awad, S. Liu, S. Shuai, Z. Wang, NOx emissions prediction based on mutual information and back propagation neural network using correlation quantitative analysis, Energy. 198 (2020) 117286. https://doi.org/10.1016/j.energy.2020.117286. [11] W. Zheng, C. Wang, Y. Yang, Y. Zhang, Multi-objective combustion optimization based on data-driven hybrid strategy, Energy. 191 (2020) 116478. https://doi.org/10.1016/j.energy.2019.116478. [12] Y. Lv, T. Yang, J. Liu, An adaptive least squares support vector machine model with a novel update for NOx emission prediction, Chemom. Intell. Lab. Syst. 145 (2015) 103–113. https://doi.org/10.1016/j.chemolab.2015.04.006. [13] T. Yang, K. Ma, Y. Lv, Y. Bai, Real-time dynamic prediction model of NOx emission of coal-fired boilers under variable load conditions, Fuel. 274 (2020) 117811. https://doi.org/10.1016/j.fuel.2020.117811. [14] S.N. Tran, A.S. D’Avila Garcez, Deep Logic Networks: Inserting and Extracting Knowledge from Deep Belief Networks, IEEE Trans. Neural Networks Learn. Syst. 29 (2018) 246–258. https://doi.org/10.1109/TNNLS.2016.2603784. [15] M. Bianchini, F. Scarselli, On the complexity of shallow and deep neural network classifiers, 22nd Eur. Symp. Artif. Neural Networks, Comput. Intell. Mach. Learn. ESANN 2014 - Proc. 25 (2014) 371–376. [16] X. Hu, P. Niu, J. Wang, X. Zhang, Multi-objective prediction of coal-fired boiler with a deep hybrid neural networks, Atmos. Pollut. Res. 11 (2020) 1084–1090. https://doi.org/10.1016/j.apr.2020.04.001. [17] F. Wang, S. Ma, H. Wang, Y. Li, J. Zhang, Prediction of NOX emission for coal-fired boilers based on deep belief network, Control Eng. Pract. 80 (2018) 26–35. https://doi.org/10.1016/j.conengprac.2018.08.003. [18] D. Adams, D.H. Oh, D.W. Kim, C.H. Lee, M. Oh, Prediction of SOx–NOx emission from a coal-fired CFB power plant with machine learning: Plant data learned by deep neural network and least square support vector machine, J. Clean. Prod. 270 (2020) 122310. https://doi.org/10.1016/j.jclepro.2020.122310. [19] P. Tan, B. He, C. Zhang, D. Rao, S. Li, Q. Fang, G. Chen, Dynamic modeling of NOX emission in a 660 MW coal-fired boiler with long short-term memory, Energy. 176 (2019) 429–436. https://doi.org/10.1016/j.energy.2019.04.020. [20] T. Chai, J. Zhang, T. Yang, S. Member, Demand Forecasting of the Fused Magnesia Smelting Process with System Identification and deep learning, IEEE Trans. Ind. Informatics. 3203 (2021) 1–10. https://doi.org/10.1109/TII.2021.3065930. [21] G. Yang, Y. Wang, X. Li, Prediction of the NOx emissions from thermal power plant using long-short term memory neural network, Energy. 192 (2020) 116597. https://doi.org/10.1016/j.energy.2019.116597. [22] M.A. Bertolero, B.T. Thomas Yeo, M. D’Esposito, The modular and integrative functional architecture of the human brain, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) E6798–E6807. https://doi.org/10.1073/pnas.1510619112. [23] H.J. Park, K. Friston, Structural and functional brain networks: From connections to cognition, Science. 342 (2013) 1238411. https://doi.org/10.1126/science.1238411. [24] O. Sporns, R.F. Betzel, Modular brain networks, Annu. Rev. Psychol. 67 (2016) 613–640. https://doi.org/10.1146/annurev-psych-122414-033634. [25] A.O. Hoori, S. Member, A. Al Kazzaz, R. Khimani, Y. Motai, S. Member, A.J. Aved, Electric Load Forecasting Model Using a Multicolumn Deep Neural Networks, IEEE Trans. Ind. Informatics. 67 (2020) 6473–6482. [26] L. Wang, S. Mao, B. Wilamowski, R.M. Nelms, Ensemble Learning for Load Forecasting, IEEE Trans. Green Commun. Netw. 4(2020) 616-628. https://doi.org/10.1109/TGCN.2020.2987304. [27] Z. Yuan, L. Meng, X. Gu, Y. Bai, H. Cui, C. Jiang, Prediction of NOx emissions for coal-fired power plants with stacked-generalization ensemble method, Fuel. 289 (2021) 119748. https://doi.org/10.1016/j.fuel.2020.119748. [28] Y. Liu, C. Yang, K. Huang, W. Gui, Non-ferrous metals price forecasting based on variational mode decomposition and LSTM network, Knowledge-Based Syst. 188 (2020) 105006. https://doi.org/10.1016/j.knosys.2019.105006. [29] M. Ali, A. Sarwar, V. Sharma, J. Suri, Artificial neural network based screening of cervical cancer using a hierarchical modular neural network architecture (HMNNA) and novel benchmark uterine cervix cancer database, Neural Comput. Appl. 31 (2019) 2979–2993. https://doi.org/10.1007/s00521-017-3246-7. [30] P. Melin, I. Miramontes, G. Prado-Arechiga, A hybrid model based on modular neural networks and fuzzy systems for classification of blood pressure and hypertension risk diagnosis, Expert Syst. Appl. 107 (2018) 146–164. https://doi.org/10.1016/j.eswa.2018.04.023. [31] R. Chandra, S. Cripps, Coevolutionary multi-task learning for feature-based modular pattern classification, Neurocomputing. 319 (2018) 164–175. https://doi.org/10.1016/j.neucom.2018.08.011. [32] J. Qiao, X. Guo, W. Li, An online self-organizing modular neural network for nonlinear system modeling, Appl. Soft Comput. J. 97 (2020) 106777. https://doi.org/10.1016/j.asoc.2020.106777. [33] W. Li, M. Li, J. Zhang, J. Qiao, Design of a self-organizing reciprocal modular neural network for nonlinear system modeling, Neurocomputing. 411 (2020) 327–339. https://doi.org/10.1016/j.neucom.2020.06.056. [34] Z. Li, Z. Miao, Effects of moisture and its input form on coal combustion process and NOx transformation characteristics in lignite boiler, Fuel. 266 (2020) 116970. https://doi.org/10.1016/j.fuel.2019.116970. [35] P.W. Li, C.S. Chyang, H.W. Ni, An experimental study of the effect of nitrogen origin on the formation and reduction of NOx in fluidized-bed combustion, Energy. 154 (2018) 319–327. https://doi.org/10.1016/j.energy.2018.04.141. [36] Pattern recognition with fuzzy objective function algorithms (James C. Bezdek) [37] L.F. Zhu, J.S. Wang, H.Y. Wang, A Novel Clustering Validity Function of FCM Clustering Algorithm, IEEE Access. 7 (2019) 152289–152315. https://doi.org/10.1109/ACCESS.2019.2946599. [38] S. Hochreiter, J. Schmidhuber, Long Short-Term Memory, Neural Comput. 29 (2001) 147–158. [39] H. Peng, F. Long, C. Ding, Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy, IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005) 1226–1238. https://doi.org/10.1109/TPAMI.2005.159. [40] T. Zhongda, li Shujiang, W. Yanhong, W. Xiangdong, A multi-model fusion soft sensor modelling method and its application in rotary kiln calcination zone temperature prediction, Trans. Inst. Meas. Control. 38 (2016) 110–124. https://doi.org/10.1177/0142331215573099. [41] X. Meng, P. Rozycki, J.F. Qiao, B.M. Wilamowski, Nonlinear System Modeling Using RBF Networks for Industrial Application, IEEE Trans. Ind. Informatics. 14 (2018) 931–940. https://doi.org/10.1109/TII.2017.2734686. |