Chinese Journal of Chemical Engineering ›› 2023, Vol. 58 ›› Issue (6): 89-102.DOI: 10.1016/j.cjche.2022.10.008
Previous Articles Next Articles
Chaozhi Zhang1,2, Qianqian Shen1, Yanxiao Su1, Ruihua Jin1
Received:
2022-07-04
Revised:
2022-10-22
Online:
2023-08-31
Published:
2023-06-28
Contact:
Chaozhi Zhang,E-mail:zhangchaozhi@nuist.edu.cn
Supported by:
Chaozhi Zhang1,2, Qianqian Shen1, Yanxiao Su1, Ruihua Jin1
通讯作者:
Chaozhi Zhang,E-mail:zhangchaozhi@nuist.edu.cn
基金资助:
Chaozhi Zhang, Qianqian Shen, Yanxiao Su, Ruihua Jin. Efficient heavy metal recycling and water reuse from industrial wastewater using new reusable and inexpensive polyphenylene sulfide derivatives[J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 89-102.
Chaozhi Zhang, Qianqian Shen, Yanxiao Su, Ruihua Jin. Efficient heavy metal recycling and water reuse from industrial wastewater using new reusable and inexpensive polyphenylene sulfide derivatives[J]. 中国化学工程学报, 2023, 58(6): 89-102.
[1] S.H. Khan, Advanced approaches for heavy metals removal from industrial wastewater, in: P.S. Maulin, R.C. Susana. K. Vineet (Eds.), New Trends in Removal of Heavy Metals from Industrial Wastewater, Elsevier, Amsterdam, 2021: 403-440. [2] Q.G. Li, G.H. Liu, L. Qi, H.C. Wang, Z.F. Ye, Q.L. Zhao, Heavy metal-contained wastewater in China: Discharge, management and treatment, Sci. Total. Environ. 808 (2022) 152091. [3] X. Li, Q.Q. Yang, L. Wang, C.X. Song, L.F. Chen, J. Zhang, Y. Liang, Using Caenorhabditis elegans to assess the ecological health risks of heavy metals in soil and sediments around Dabaoshan Mine, China, Environ. Sci. Pollut. Res. 29 (11) (2022) 16332-16345. [4] X.M. Liu, Q.J. Song, Y. Tang, W.L. Li, J.M. Xu, J.J. Wu, F. Wang, P.C. Brookes, Human health risk assessment of heavy metals in soil-vegetable system: A multi-medium analysis, Sci. Total. Environ. 463-464 (2013) 530-540. [5] S.S. Yang, W.Z. Feng, S.Q. Wang, L. Chen, X. Zheng, X.F. Li, D.M. Zhou, Farmland heavy metals can migrate to deep soil at a regional scale: A case study on a wastewater-irrigated area in China, Environ. Pollut. 281 (2021) 116977. [6] Y. Feng, Y.Q. Wang, Y.Y. Wang, S.C. Liu, J.L. Jiang, C.J. Cao, J.F. Yao, Simple fabrication of easy handling millimeter-sized porous attapulgite/polymer beads for heavy metal removal, J. Colloid Interf. Sci. 502 (2017) 52-58. [7] Y. Feng, Y.Y. Wang, Y.Q. Wang, X.F. Zhang, J.F. Yao, In-situ gelation of sodium alginate supported on melamine sponge for efficient removal of copper ions, J. Colloid Interf. Sci. 512 (2018) 7-13. [8] L.P. Wang, Y.J. Chen, Sequential precipitation of iron, copper, and zinc from wastewater for metal recovery, J. Environ. Eng. 145 (1) (2019) 04018130. [9] R.P. Wu, Removal ofheavymetalions from industrial wastewater based on chemical precipitation method, Ekoloji 28 (2019) 2443-2452. [10] V. Ajao, K. Nam, P. Chatzopoulos, E. Spruijt, H. Bruning, H. Rijnaarts, H. Temmink, Regeneration and reuse of microbial extracellular polymers immobilised on a bed column for heavy metal recovery, Water Res. 171 (2020) 115472. [11] J. Gao, Y.R. Qiu, B. Hou, Q. Zhang, X.D. Zhang, Treatment of wastewater containing nickel by complexation-ultrafiltration using sodium polyacrylate and the stability of PAA-Ni complex in the shear field, Chem. Eng. J. 334 (2018) 1878-1885. [12] Z.Y. Han, Z.H. Guo, Y. Zhang, X.Y. Xiao, Z. Xu, Y. Sun, Adsorption-pyrolysis technology for recovering heavy metals in solution using contaminated biomass phytoremediation, Resour. Conserv. Recycl. 129 (2018) 20-26. [13] M.T. Hoang, T.D. Pham, V.T. Nguyen, M.K. Nguyen, T.T. Pham, B. van der Bruggen, Removal and recovery of lead from wastewater using an integrated system of adsorption and crystallization, J. Clean. Prod. 213 (2019) 1204-1216. [14] T. Kegl, A. Košak, A. Lobnik, Z. Novak, A.K. Kralj, I. Ban, Adsorption of rare earth metals from wastewater by nanomaterials: A review, J. Hazard. Mater. 386 (2020) 121632. [15] S.Y. Bao, Y.J. Wang, Z.S. Wei, W.W. Yang, Y.S. Yu, Highly efficient recovery of heavy rare earth elements by using an amino-functionalized magnetic graphene oxide with acid and base resistance, J. Hazard. Mater. 424 (Pt A) (2022) 127370. [16] S.Y. Bao, Y.J. Wang, Z.S. Wei, W.W. Yang, Y.S. Yu, Y.Y. Sun, Amino-assisted AHMT anchored on graphene oxide as high performance adsorbent for efficient removal of Cr(VI) and Hg(II) from aqueous solutions under wide pH range, J. Hazard. Mater. 416 (2021) 125825. [17] S.Y. Bao, W.W. Yang, Y.J. Wang, Y.S. Yu, Y.Y. Sun, K.F. Li, PEI grafted amino-functionalized graphene oxide nanosheets for ultrafast and high selectivity removal of Cr(VI) from aqueous solutions by adsorption combined with reduction: Behaviors and mechanisms, Chem. Eng. J. 399 (2020) 125762. [18] M.Y. Gao, F.Y. Tian, Z. Guo, X. Zhang, Z.J. Li, J. Zhou, X. Zhou, Y.S. Yu, W.W. Yang, Mutual-modification effect in adjacent Pt nanoparticles and single atoms with sub-nanometer inter-site distances to boost photocatalytic hydrogen evolution, Chem. Eng. J. 446 (2022) 137127. [19] X. Zhang, W.W. Yang, M.Y. Gao, H. Liu, K.F. Li, Y.S. Yu, Room-temperature solid phase surface engineering of BiOI sheets stacking g-C3N4 boosts photocatalytic reduction of Cr(VI), Green Energy Environ. 7 (1) (2022) 66-74. [20] B.Z. Zou, S.J. Zhang, P. Sun, Z.F. Ye, Q.L. Zhao, W. Zhang, L.C. Zhou, Preparation of a novel poly-chloromethyl styrene chelating resin containing heterofluorenone pendant groups for the removal of Cu (II), Pb (II), and Ni (II) from wastewaters, Colloid Interf. Sci. Commun. 40 (2021) 100349. [21] F. Hussin, M.K. Aroua, M. Szlachta, Biochar derived from fruit by-products using pyrolysis process for the elimination of Pb(II) ion: An updated review, Chemosphere 287 (2022) 132250. [22] M. Imamoglu, H. Şahin, Ş. Aydın, F. Tosunoğlu, H. Yılmaz, S.Z. Yıldız, Investigation of Pb(II) adsorption on a novel activated carbon prepared from hazelnut husk by K2CO3 activation, Desalin. Water Treat. 57 (10) (2016) 4587-4596. [23] S.G. Wang, K.K. Wang, C. Dai, H.Z. Shi, J.L. Li, Adsorption of Pb2+ on amino-functionalized core-shell magnetic mesoporous SBA-15 silica composite, Chem. Eng. J. 262 (2015) 897-903. [24] Z.H. Wang, B.Y. Yue, J. Teng, F.P. Jiao, X.Y. Jiang, J.G. Yu, M. Zhong, X.Q. Chen, Tartaric acid modified graphene oxide as a novel adsorbent for high-efficiently removal of Cu(II) and Pb(II) from aqueous solutions, J. Taiwan Inst. Chem. Eng. 66 (2016) 181-190. [25] Z.L. Li, Y. Kong, Y.Y. Ge, Synthesis of porous lignin xanthate resin for Pb2+ removal from aqueous solution, Chem. Eng. J. 270 (2015) 229-234. [26] M.L. Rahman, Z.J. Wong, M.S. Sarjadi, C.G. Joseph, S.E. Arshad, B. Musta, M.H. Abdullah, Waste fiber-based poly(hydroxamic acid) ligand for toxic metals removal from industrial wastewater, Polymers 13 (9) (2021) 1486. [27] T. Siddharth, P. Sridhar, V. Vinila, R.D. Tyagi, Environmental applications of microbial extracellular polymeric substance (EPS): A review, J. Environ. Manage. 287 (2021) 112307. [28] A. Gupta, V. Sharma, K. Sharma, V. Kumar, S. Choudhary, P. Mankotia, B. Kumar, H. Mishra, A. Moulick, A. Ekielski, P.K. Mishra, A review of adsorbents for heavy metal decontamination: Growing approach to wastewater treatment, Materials 14 (16) (2021) 4702. [29] L.M. Yang, W.B. Hu, Z.W. Chang, T. Liu, D.F. Fang, P.H. Shao, H. Shi, X.B. Luo, Electrochemical recovery and high value-added reutilization of heavy metal ions from wastewater: Recent advances and future trends, Environ. Int. 152 (2021) 106512. [30] C.Z. Zhang, H. Sheng, Y.X. Su, J.Q. Xu, An efficient and health-friendly adsorbent N-[4-morpholinecarboximidamidoyl]carboximidamidoylmethylated polyphenylene sulfide for removing heavy metal ions from water, J. Mol. Liq. 296 (2019) 111860. [31] C.Z. Zhang, Y. Yuan, T. Li, Adsorption and desorption of heavy metals from water using aminoethyl reduced graphene oxide, Environ. Eng. Sci. 35 (9) (2018) 978-987. [32] J.J. Huang, X. Zhang, L.L. Bai, S.G. Yuan, Polyphenylene sulfide based anion exchange fiber: Synthesis, characterization and adsorption of Cr(VI), J. Environ. Sci. 24 (8) (2012) 1433-1438. [33] GB/T 2945-2017, Standard for ammonium nitrate, In: National Standard of the People's Republic of China, State General Administration of the People's Republic of China for Quality Supervision and Inspection and Quarantine, Beijing, 2017. [34] H. Li, G.Y. Lv, G. Zhang, H.H. Ren, X.X. Fan, Y.G. Yan, Synthesis and characterization of novel poly(phenylene sulfide) containing a chromophore in the main chain, Polym. Int. 63 (9) (2014) 1707-1714. [35] G.L. Shao, J.F. Xiao, Z.H. Tian, J.J. Huang, S.G. Yuan, Preparation and characterization of polyphenylene sulfide-based chelating resin-functionalized 2-amino-1,3,4-thiadiazole for selective removal Hg(II) from aqueous solutions, Polym. Adv. Technol. 29 (3) (2018) 1030-1038. [36] D.J. Zhou, L.B. Dai, H. Ni, G.L. Hui, S.G. Yuan, Preparation and characterization of polyphenylene sulfide-based chelating fibers, Chin. Chem. Lett. 25 (2) (2014) 221-225. [37] C. Pevida, T.C. Drage, C.E. Snape, Silica-templated melamine-formaldehyde resin derived adsorbents for CO2 capture, Carbon 46 (11) (2008) 1464-1474. [38] O.C.S. Al Hamouz, Synthesis and characterization of a novel series of cross-linked (phenol, formaldehyde, alkyldiamine) terpolymers for the removal of toxic metal ions from wastewater, Arab. J. Sci. Eng. 41 (1) (2016) 119-133. [39] C.Z. Zhang, Q.Q. Shen, M.X. Niu, M.R. Ni, Computational design and templated synthesis of porous polyether frameworks with N and O adsorption sites for efficiently chelating heavy metal ions, Ind. Eng. Chem. Res. 60 (45) (2021) 16267-16277. [40] Q.Y. Chen, L. Yang, L. Liu, X.X. Li, H.D. Li, Q. Zhang, D.J. Cao, XPS and NMR analyze the combined forms of Pb in Cladophora rupestris subcells and its detoxification, Environ. Sci. Pollut. Res. 29 (38) (2022) 57490-57501. [41] X.C. Yu, Q.B. Cao, H. Zou, Q.S. Peng, Activation mechanism of lead ions in the flotation of rutile using amyl xanthate as a collector, Min. Metall. Explor. 37 (1) (2020) 333-344. [42] R.Q. Fu, Y. Liu, Z.M. Lou, Z.X. Wang, S.A. Baig, X.H. Xu, Adsorptive removal of Pb(II) by magnetic activated carbon incorporated with amino groups from aqueous solutions, J. Taiwan Inst. Chem. Eng. 62 (2016) 247-258. [43] A. Denizli, B. Garipcan, A. Karabakan, H. Senöz, Synthesis and characterization of poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) copolymer beads for removal of lead ions, Mater. Sci. Eng. C 25 (4) (2005) 448-454. [44] A. Kara, L. Uzun, N. Beşirli, A. Denizli, Poly(ethylene glycol dimethacrylate-n-vinyl imidazole) beads for heavy metal removal, J. Hazard. Mater. 106 (2-3) (2004) 93-99. [45] S.S. Kalaivani, A. Muthukrishnaraj, S. Sivanesan, L. Ravikumar, Novel hyperbranched polyurethane resins for the removal of heavy metal ions from aqueous solution, Process. Saf. Environ. Prot. 104 (2016) 11-23. [46] GB8978-1996, Integrated wastewater discharge standard, In: National Standard of the People's Republic of China, Beijing, 1996. [47] S.H. Dai, N. Wang, C.J. Qi, X.X. Wang, Y. Ma, L. Yang, X.Y. Liu, Q. Huang, C.M. Nie, B.W. Hu, X.K. Wang, Preparation of core-shell structure Fe3O4@C@MnO2 nanoparticles for efficient elimination of U(VI) and Eu(III) ions, Sci. Total. Environ. 685 (2019) 986-996. [48] H. Tang, J.Q. Wang, S. Zhang, H.W. Pang, X.X. Wang, Z.S. Chen, M. Li, G. Song, M.Q. Qiu, S.J. Yu, Recent advances in nanoscale zero-valent iron-based materials: Characteristics, environmental remediation and challenges, J. Clean. Prod. 319 (2021) 128641. [49] T.T. Zhang, J.M. Chen, H.Y. Xiong, Z.D. Yuan, Y.L. Zhu, B.W. Hu, Constructing new Fe3O4@MnOx with 3D hollow structure for efficient recovery of uranium from simulated seawater, Chemosphere 283 (2021) 131241. [50] B.W. Hu, H.F. Wang, R.R. Liu, M.Q. Qiu, Highly efficient U(VI) capture by amidoxime/carbon nitride composites: Evidence of EXAFS and modeling, Chemosphere 274 (2021) 129743. [51] L.J. Feng, The synthesis of nano-Pb(OH)2, AgCuO2 and their electrochemical performance, Ph. D. Thesis, Beijing University of Chemical Technology, China, 2008. [52] M. Salavati-Niasari, F. Tavakoli, Pb(OH)I-graphene composite: synthesis and characterization, J. Ind. Eng. Chem. 21 (2015) 1208-1213. [53] F. Tavakoli, M. Salavati-Niasari, F. Mohandes, Sonochemical synthesis and characterization of lead iodide hydroxide micro/nanostructures, Ultrason. Sonochem. 21 (1) (2014) 234-241. |
[1] | Miaomiao Zhao, Degang Ma, Yu Ye. Adsorption, separation and recovery properties of blocky zeolite-biochar composites for remediation of cadmium contaminated soil [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 272-279. |
[2] | Xin Ren, Li Leng, Yueqiang Cao, Jing Zhang, Xuezhi Duan, Xueqing Gong, Jinghong Zhou, Xinggui Zhou. Enhanced recycling performance of bimetallic Ir-Re/SiO2 catalyst by amberlyst-15 for glycerol hydrogenolysis [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 171-181. |
[3] | Dong Sun, Lin Yang, Ning Liu, Wenju Jiang, Xia Jiang, Jianjun Li, Zhengyou Yang, Zhengping Song. Sulfur resource recovery based on electrolytic manganese residue calcination and manganese oxide ore desulfurization for the clean production of electrolytic manganese [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 864-870. |
[4] | Tomohito Kameda, Kazuya Horikoshi, Shogo Kumagai, Yuko Saito, Toshiaki Yoshioka. Adsorption of urea, creatinine, and uric acid from three solution types using spherical activated carbon and its recyclability [J]. Chinese Journal of Chemical Engineering, 2020, 28(12): 2993-3001. |
[5] | Mohammad El Wali, Saeed Rahimpour Golroudbary, Andrzej Kraslawski. Impact of recycling improvement on the life cycle of phosphorus [J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1219-1229. |
[6] | Erwei Song, Zengxi Li, Erqiang Wang. A novel kind of multiple steady states characteristics in the dividing wall column [J]. Chinese Journal of Chemical Engineering, 2019, 27(4): 869-876. |
[7] | Hadiseh Khalilpourmeymandi, Azadeh Mirvakili, Mohammad Reza Rahimpour, Alireza Shariati. Application of response surface methodology for optimization of purge gas recycling to an industrial reactor for conversion of CO2 to methanol [J]. , 2017, 25(5): 676-687. |
[8] | Shiyang Bai, Xintao Hu, Jihong Sun, Bo Ren, Jinpeng Wang. Recovery and Recycling of Ti Supported Bimodal Mesoporous Catalysts Prepared via Ship-in-a-bottle Method in the Epoxidation of Cyclohexene [J]. Chin.J.Chem.Eng., 2014, 22(8): 914-920. |
[9] | HUANG Kelin, WU Rui, CAO Yan, LI Huiquan, WANG Jinshu. Recycling and Reuse of Ionic Liquid in Homogeneous Cellulose Acetylation [J]. Chin.J.Chem.Eng., 2013, 21(5): 577-584. |
[10] | TANG Huang, LI Qiang, WANG Zelong, YAN Daojiang, XING Jianmin. Simultaneous Removal of Thiophene and Dibenzothiophene by Immobilized Pseudomonas delafieldii R-8 cells [J]. , 2012, 20(1): 47-51. |
[11] | GENG Yanlou, HU Liyan, ZHAO Xinqiang, AN Hualiang, WANG Yanji . Synthesis of 4,4'-MDC in the Presence of Sulfonic Acid-functionalized Ionic Liquids [J]. , 2009, 17(5): 756-760. |
[12] | Joanna Koralewska, Krzysztof Piotrowski, Boguslawa Wierzbowska, Andrzej Matynia. Kinetics of Reaction-Crystallization of Struvite in the Continuous Draft Tube Magma Type Crystallizers——Influence of Different Internal Hydrodynamics [J]. , 2009, 17(2): 330-339. |
[13] | BAI Jie, FENG Xiao. Analysis on the Interaction of Parameters of Single-contaminant Regeneration Recycling Water Systems [J]. Chin.J.Chem.Eng., 2008, 16(1): 21-25. |
[14] |
LI Qingbiao, LIAO Xinkai, WU Zhiwang, DENG Xu, HUANG Yili, LU Yinghua, SUN Daohua, HONG Mingyuan, WANG Lin.
Preliminary Study on the Performance and Interaction of Recycling Hydrolytic-Aerobic Combined Process of High Concentration Starch Wastewater [J]. , 2004, 12(1): 108-112. |
[15] | Chu Ju, Gang Jie, Li Yourong, Yu Juntang. Membrane Microfiltration Fermentation of Glucose Oxidase with Cell Recycling [J]. , 1999, 7(1): 30-37. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 73
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 109
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||