Chinese Journal of Chemical Engineering ›› 2023, Vol. 58 ›› Issue (6): 355-363.DOI: 10.1016/j.cjche.2022.09.021
Yutong Jiang1, Yifeng Chen2,3, Fuliu Yang1, Jixue Fan1, Jun Li1, Zhuhong Yang1, Xiaoyan Ji4
Received:
2022-04-18
Revised:
2022-09-23
Online:
2023-08-31
Published:
2023-06-28
Contact:
Yifeng Chen,E-mail:yfchen@icifp.cn;Zhuhong Yang,E-mail:zhhyang@njtech.edu.cn
Supported by:
Yutong Jiang1, Yifeng Chen2,3, Fuliu Yang1, Jixue Fan1, Jun Li1, Zhuhong Yang1, Xiaoyan Ji4
通讯作者:
Yifeng Chen,E-mail:yfchen@icifp.cn;Zhuhong Yang,E-mail:zhhyang@njtech.edu.cn
基金资助:
Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure[J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 355-363.
Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure[J]. 中国化学工程学报, 2023, 58(6): 355-363.
[1] M. Rathnayake, P. Julnipitawong, S. Tangtermsirikul, P. Toochinda, Utilization of coal fly ash and bottom ash as solid sorbents for sulfur dioxide reduction from coal fired power plant: life cycle assessment and applications, J. Clean. Prod. 202 (2018) 934-945. [2] Z.M. Li, S.X. Zhu, F.F. Mao, Y. Zhou, W.S. Zhu, D.J. Tao, CTAB-controlled synthesis of phenolic resin-based nanofiber aerogels for highly efficient and reversible SO2 capture, Chem. Eng. J. 431 (2022) 133715 [3] K.H. Ng, S.Y. Lai, N.F.M. Jamaludin, A.R. Mohamed, A review on dry-based and wet-based catalytic sulphur dioxide (SO2) reduction technologies, J. Hazard. Mater. 423 (2022) 127061 [4] X.B. Wang, J.B. Du, H. Cui, Sulfur dioxide, a double-faced molecule in mammals, Life Sci. 98 (2) (2014) 63-67 [5] K. Wang, W.J. Xu, Q.L. Wang, C.C. Zhao, Z.X. Huang, C. Yang, C.S. Ye, T. Qiu, Rational design and screening of ionic liquid absorbents for simultaneous and stepwise separations of SO2 and CO2 from flue gas, Ind. Eng. Chem. Res. 61 (6) (2022) 2548-2561. [6] S. Wang, S. Xu, S. Gao, P. Xiao, M. Jiang, H. Zhao, B. Huang, L. Liu, H. Niu, J. Wang, D. Guo, Simultaneous removal of SO2 and NOx from flue gas by low-temperature adsorption over activated carbon, Sci. Rep, 11 (1) (2021) 11003 [7] M.B. Shiflett, A. Yokozeki, Chemical absorption of sulfur dioxide in room-temperature ionic liquids, Ind. Eng. Chem. Res. 49 (3) (2010) 1370-1377 [8] X.K. Li, J.R. Han, Y. Liu, Z.H. Dou, T.A. Zhang, Summary of research progress on industrial flue gas desulfurization technology, Sep. Purif. Technol. 281 (2022) 119849 [9] M.A. Hanif, N. Ibrahim, A. Abdul Jalil, Sulfur dioxide removal: an overview of regenerative flue gas desulfurization and factors affecting desulfurization capacity and sorbent regeneration, Environ. Sci. Pollut. Res. Int. 27 (22) (2020) 27515-27540 [10] X. Xia, L.Q. Zhang, X.L. Yuan, C.Y. Ma, Z.L. Song, X.Q. Zhao, Integrated assessment of the environmental and economic effects of resource utilization process for lime/gypsum flue gas desulfurization collaborative desulfurized gypsum, Environ. Eng. Sci. 38 (9) (2021) 886-898. [11] A. Shakeel, H. Mahmood, U. Farooq, Z. Ullah, S. Yasin, T. Iqbal, C. Chassagne, M. Moniruzzaman, Rheology of pure ionic liquids and their complex fluids: a review, ACS Sustain. Chem. Eng, 7 (16) (2019) 13586-13626 [12] L.L. Jiang, K. Mei, K.H. Chen, R.N. Dao, H.R. Li, C.M. Wang, Design and prediction for highly efficient SO2 capture from flue gas by imidazolium ionic liquids, Green Energy Environ. 7 (1) (2022) 130-136 [13] O. Nordness, J.F. Brennecke, Ion dissociation in ionic liquids and ionic liquid solutions, Chem. Rev. 120 (23) (2020) 12873-12902 [14] F.F. Mao, Y. Zhou, W.S. Zhu, X.Y. Sang, Z.M. Li, D.J. Tao, Synthesis of guanidinium-based poly(ionic liquids) with nonporosity for highly efficient SO2 capture from flue gas, Ind. Eng. Chem. Res. 60 (16) (2021) 5984-5991 [15] W.Z. Wu, B.X. Han, H.X. Gao, Z.M. Liu, T. Jiang, J. Huang, Desulfurization of flue gas: SO2 absorption by an ionic liquid, Angew. Chem. Int. Ed. 43 (18) (2004) 2415-2417 [16] Huang J, Riisager A, Wasserscheid P, Fehrmann R, Reversible physical absorption of SO2 by ionic liquids, Chem. Commun. (Camb) (38) (2006) 4027-4029 [17] C.M. Wang, G.K. Cui, X.Y. Luo, Y.J. Xu, H.R. Li, S. Dai, Highly efficient and reversible SO2 capture by tunable azole-based ionic liquids through multiple-site chemical absorption, J. Am. Chem. Soc. 133 (31) (2011) 11916-11919 [18] K.H. Chen, W.J. Lin, X.N. Yu, X.Y. Luo, F. Ding, X. He, H.R. Li, C.M. Wang, Designing of anion-functionalized ionic liquids for efficient capture of SO2from flue gas, AIChE J. 61 (6) (2015) 2028-2034 [19] B. Jiang, H.M. Zhang, L.H. Zhang, N. Zhang, Z.H. Huang, Y. Chen, Y.L. Sun, X.W. Tantai, Novel deep eutectic solvents for highly efficient and reversible absorption of SO2 by preorganization strategy, ACS Sustainable Chem. Eng. 7 (9) (2019) 8347-8357 [20] D. Li, Y. Kang, J. Li, Z.C. Wang, Z.N. Yan, K. Sheng, Chemically tunable DILs: physical properties and highly efficient capture of low-concentration SO2, Sep. Purif. Technol. 240 (2020) 116572 [21] G.K. Cui, S.Z. Lyu, H.Y. Wang, Z.Y. Li, R.N. Zhang, J.J. Wang, Tuning the structure of pyridinolate-based functional ionic liquids for highly efficient SO2 absorption, Fuel 303 (2021) 121311 [22] F.Y. Wei, Y. He, P. Xue, Y.J. Yao, C.W. Shi, P. Cui, Mass transfer performance for low SO2 absorption into aqueous N, N'-bis(2-hydroxypropyl)piperazine solution in a θ-ring packed column, Ind. Eng. Chem. Res. 53 (11) (2014) 4462-4468. [23] P. Cui, T.T. Wang, Q. Wang, B. Li, Effects of Acidic Compounds on SO2 Absorption and Desorption Property of 1,4-bis(2-hydroxypropyl)piperazine aqueous solution, Chem. J. Chinese. U, 28 (3) (2013) 399-405. [24] J.F. Liu, T.T. Wang, Q. Wang, P. Cui, Study on parameters of SO2 absorption and desorption in 1,4-bis(2-hydroxypropyl)piperazine aqueous solution, Applied Chemical Industry, 41 (4) (2012) 606-608 [25] G.K. Cui, J.X. Liu, S.Z. Lyu, H.Y. Wang, Z.Y. Li, J.J. Wang, Efficient and reversible SO2 absorption by environmentally friendly task-specific deep eutectic solvents of PPZBr + gly, ACS Sustainable Chem. Eng. 7 (16) (2019) 14236-14246 [26] X.X. Lu, L. Yue, M.J. Hu, Q. Cao, L. Xu, Y.S. Guo, S.L. Hu, W.J. Fang, Piperazinium-based ionic liquids with lactate anion for extractive desulfurization of fuels, Energy Fuels 28 (3) (2014) 1774-1780 [27] V. Sanz, R. Alcalde, M. Atilhan, S. Aparicio, Insights from quantum chemistry into piperazine-based ionic liquids and their behavior with regard to CO2, J. Mol. Model. 20 (3) (2014) 2107 [28] S.C. Tiwari, K.K. Pant, S. Upadhyayula, Efficient CO2 absorption in aqueous dual functionalized cyclic ionic liquids, J. CO2 Util. 45 (2021) 101416 [29] S. Aparicio, M. Atilhan, On the properties of CO2 and flue gas at the piperazinium-based ionic liquids interface: a molecular dynamics study, J. Phys. Chem. C 117 (29) (2013) 15061-15074. [30] G.K. Cui, S.Z. Lyu, F.T. Zhang, H.Y. Wang, Z.Y. Li, Y.N. Li, J.J. Wang, Tuning ionic liquids with functional anions for SO2 capture through simultaneous cooperation of N and O chemical active sites with SO2, Ind. Eng. Chem. Res, 59 (49) (2020) 21522-21529 [31] A.F. Bouarab, J.P. Harvey, C. Robelin, Viscosity models for ionic liquids and their mixtures, Phys. Chem. Chem. Phys. 23 (2) (2021) 733-752 [32] Z.P. McAtee, M.P. Heitz, Density, viscosity and excess properties in the trihexyltetradecylphosphonium chloride ionic liquid/methanol cosolvent system, J. Chem. Thermodyn. 93 (2016) 34-44 [33] N.D. Khupse, A. Kumar, Dramatic change in viscosities of pure ionic liquids upon addition of molecular solvents, J. Solut. Chem. 38 (5) (2009) 589-600 [34] J.G. Qian, S.H. Ren, S.D. Tian, Y.C. Hou, C.X. Wang, W.Z. Wu, Highly efficient and reversible absorption of SO2 by aqueous triethylenetetramine tetralactate solutions, Ind. Eng. Chem. Res. 53 (39) (2014) 15207-15212 [35] B. Jiang, S. Hou, L.H. Zhang, N. Yang, N. Zhang, X.M. Xiao, X.D. Yang, Y.L. Sun, X.W. Tantai, Ether-linked diamine carboxylate ionic liquid aqueous solution for efficient absorption of SO2, Ind. Eng. Chem. Res. 59 (38) (2020) 16786-16794 [36] M.R. Mohammadi, F. Hadavimoghaddam, S. Atashrouz, A. Abedi, A. Hemmati-Sarapardeh, A. Mohaddespour, Toward predicting SO2 solubility in ionic liquids utilizing soft computing approaches and equations of state, J. Taiwan Inst. Chem. Eng. 133 (2022) 104220 [37] M.J. Jin, Y.C. Hou, W.Z. Wu, S.H. Ren, S.D. Tian, L. Xiao, Z.G. Lei, Solubilities and thermodynamic properties of SO2 in ionic liquids, J. Phys. Chem. B 115 (20) (2011) 6585-6591 [38] Y.Q. Chen, X.Y. Liu, J.M. Woodley, G.M. Kontogeorgis, Gas solubility in ionic liquids: UNIFAC-IL model extension, Ind. Eng. Chem. Res. 59 (38) (2020) 16805-16821 [39] K. Huang, Y.L. Chen, X.M. Zhang, S. Xia, Y.T. Wu, X.B. Hu, SO2 absorption in acid salt ionic liquids/sulfolane binary mixtures: experimental study and thermodynamic analysis, Chem. Eng. J. 237 (2014) 478-486 [40] K. Huang, Y.T. Wu, X.B. Hu, Effect of alkalinity on absorption capacity and selectivity of SO2 and H2S over CO2: substituted benzoate-based ionic liquids as the study platform, Chem. Eng. J. 297 (2016) 265-276 [41] Z.Y. Geng, S.Y. Ma, Y.H. Li, C. Peng, B.J. Jiang, P.L. Liu, Y. Xu, Guanidinium-based ionic liquids for high-performance SO2 capture and efficient conversion for cyclic sulfite esters, Ind. Eng. Chem. Res. 61 (13) (2022) 4493-4503 [42] P. Cao, Y. Yuan, C.Z. Huang, W.Z. Sun, L. Zhao, Promoting the sulfuric acid catalyzed isobutane alkylation by quaternary ammonium ionic liquids, AIChE J. 66 (8) (2020) e16979 [43] C.M. Wang, L.P. Guo, H.R. Li, Y. Wang, J.Y. Weng, L.H. Wu, Preparation of simple ammonium ionic liquids and their application in the cracking of dialkoxypropanes, Green Chem. 8 (7) (2006) 603 [44] Q. Wang, H.W. Wu, T. Zhang, Y.C. Fan, W.C. Zhang, K. He, Efficient absorption of low partial pressure SO2 by deep eutectic solvents based on pyridine derivatives, Chem. Eng. Res. Des. 177 (2022) 36-44 [45] M.Y. Chai, W.B. Zhao, G.M. Li, S.C. Xu, Q.M. Jia, Y. Chen, Novel SO2 phase-change absorbent: mixture of N, N-dimethylaniline and liquid paraffin, Ind. Eng. Chem. Res. 57 (37) (2018) 12502-12510 [46] S.R. Lim, J. Hwang, C.S. Kim, H.S. Park, M. Cheong, H.S. Kim, H. Lee, Absorption and desorption of SO2 in aqueous solutions of diamine-based molten salts, J. Hazard. Mater. 289 (2015) 63-71 [47] P. Liu, K.X. Cai, X.M. Zhang, T.X. Zhao, Effective absorption of SO2 by imidazole-based protic ionic liquids with multiple active sites: Thermodynamic and mechanical studies, Aiche J. 68 (4) (2022) e17596 [48] Q. Xu, W. Jiang, J.B. Xiao, X.H. Wei, Solubility of sulfur dioxide in tetraglyme-NH4SCN ionic liquid: high absorption efficiency, RSC Adv. 8 (73) (2018) 42116-42122 [49] K. Sheng, Y. Kang, J. Li, H.Y. Xu, D. Li, High-efficiency absorption of SO2 by a new type of deep eutectic solvents, Energy Fuels 34 (3) (2020) 3440-3448 [50] D.Z. Yang, S.Z. Zhang, D.E. Jiang, Efficient absorption of SO2 by deep eutectic solvents formed by biobased aprotic organic compound succinonitrile and 1-ethyl-3-methylimidazolium chloride, ACS Sustainable Chem. Eng. 7 (10) (2019) 9086-9091 [51] X.C. Meng, J.Y. Wang, H.C. Jiang, X.J. Zhang, S.L. Liu, Y.Q. Hu, Guanidinium-based dicarboxylic acid ionic liquids for SO2 capture, J. Chem. Technol. Biotechnol. 92 (4) (2017) 767-774 [52] D.S. Deng, C. Zhang, X.X. Deng, L. Gong, Efficient absorption of low partial pressure SO2 by 1-ethyl-3-methylimidazolium chloride plus N-formylmorpholine deep eutectic solvents, Energy Fuels 34 (1) (2020) 665-671 [53] M. Lv, D.Z. Yang, J. Chen, Deep eutectic solvents consisting of 1-ethyl-3-methylimidazolium chloride and biobased 2-pyrrolidone for reversible SO 2 capture, ChemistrySelect 5 (24) (2020) 7142-7147 [54] G. Cui, D.Z. Yang, H.B. Qi, Efficient SO2 absorption by anion-functionalized deep eutectic solvents, Ind. Eng. Chem. Res. 60 (12) (2021) 4536-4541 [55] K. Zhang, S.H. Ren, X. Yang, Y.C. Hou, W.Z. Wu, Y.Y. Bao, Efficient absorption of low-concentration SO2 in simulated flue gas by functional deep eutectic solvents based on imidazole and its derivatives, Chem. Eng. J. 327 (2017) 128-134 [56] K. Zhang, S.H. Ren, Y.C. Hou, W.Z. Wu, Efficient absorption of SO2 with low-partial pressures by environmentally benign functional deep eutectic solvents, J. Hazard. Mater. 324 (Pt B) (2017) 457-463 [57] D.S. Deng, X.B. Liu, B. Gao, Physicochemical properties and investigation of azole-based deep eutectic solvents as efficient and reversible SO2 absorbents, Ind. Eng. Chem. Res. 56 (46) (2017) 13850-13856 [58] D. Li, Y. Kang, Significantly promoted SO2 uptake by the mixture of N-methylated ethylene imine polymer and 1-ethyl-3-methylimidazolium tetrazolate, J. Hazard. Mater. 404 (Pt A) (2021) 124101 [59] G.K. Cui, C.M. Wang, J.J. Zheng, Y. Guo, X.Y. Luo, H.R. Li, Highly efficient SO2 capture by dual functionalized ionic liquids through a combination of chemical and physical absorption, Chem. Commun. 48 (20) (2012) 2633 [60] G.K. Cui, N. Zhao, Y.N. Li, H.Y. Wang, Y.L. Zhao, Z.Y. Li, J.J. Wang, Limited number of active sites strategy for improving SO2 capture by ionic liquids with fluorinated acetylacetonate anion, ACS Sustainable Chem. Eng. 5 (9) (2017) 7985-7992 [61] W. Li, Y. Liu, L.H. Wang, G.J. Gao, Using ionic liquid mixtures to improve the SO2 absorption performance in flue gas, Energy Fuels 31 (2) (2017) 1771-1777. |
[1] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[2] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 210-221. |
[3] | Chen Chen, Qiong Tang, Hong Xu, Mingxing Tang, Xuekuan Li, Lei Liu, Jinxiang Dong. Alkyl-tetralin base oils synthesized from coal-based chemicals and evaluation of their lubricating properties [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 20-28. |
[4] | Jialei Sha, Chenyi Liu, Zhihong Ma, Weizhong Zheng, Weizhen Sun, Ling Zhao. Understanding the interfacial behaviors of benzene alkylation with butene using chloroaluminate ionic liquid catalyst: A molecular dynamics simulation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 44-52. |
[5] | Yifeng Chen, Hang Yu, Jingjing Chen, Xiaohua Lu, Xiaoyan Ji. Viscous behavior of 1-hexyl-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/polyethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 280-287. |
[6] | Mi Feng, Bin He, Xinyan Chen, Junli Xu, Xingmei Lu, Cai Jia, Jian Sun. Separation of chitin from shrimp shells enabled by transition metal salt aqueous solution and ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 133-141. |
[7] | Xinqiang You, Kai Zhao, Ling Li, Ting Qiu. Ionic liquids as entrainer in extractive distillation for effectively separating 1-propanol–water azeotropic mixture [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 224-233. |
[8] | Minjie Shi, Hangtian Zhu, Cheng Yang, Jing Xu, Chao Yan. Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 1-10. |
[9] | Song Hu, Jinlong Li, Qihua Wang, Weisheng Yang. Design and optimization of an integrated process for the purification of propylene oxide and the separation of propylene glycol by-product [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 111-120. |
[10] | Alireza Afsharpour. A new approach for correlating of H2S solubility in [emim][Lac], [bmim][ac] and [emim][pro] ionic liquids using two-parts combined models [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 521-527. |
[11] | Haiyan Jiang, Lu Bai, Bingbing Yang, Shaojuan Zeng, Haifeng Dong, Xiangping Zhang. The effect of protic ionic liquids incorporation on CO2 separation performance of Pebax-based membranes [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 169-176. |
[12] | Wenjie Xiong, Mingzhen Shi, Yan Lu, Xiaomin Zhang, Xingbang Hu, Zhuoheng Tu, Youting Wu. Efficient conversion of H2S into mercaptan alcohol by tertiary-amine functionalized ionic liquids [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 197-204. |
[13] | Yuxin Wu, Zhuo Chen, Xiaohui Zhang, Jian Chen, Yundong Wang, Jianhong Xu. Kinetic study of CO2 fixation into propylene carbonate with water as efficient medium using microreaction system [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 247-253. |
[14] | Lianzheng Zhang, Jie Wang, Lin Yang, Dongmei Xu, Yixin Ma, Jun Gao, Yinglong Wang. Separation of isopropyl alcohol + isopropyl acetate azeotropic mixture: Selection of ionic liquids as entrainers and vapor-liquid equilibrium validation [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 326-334. |
[15] | Chaofeng Zhang, Tonglu Zhang, Jing Zhang, Jiandong Zhang, Ruifeng Li. Controllable synthesis of polyoxymethylene dimethyl ethers by ionic liquids encapsulated in mesoporous SBA-16 [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 175-182. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 57
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 112
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||