[1] Q.B. Liu, L. Du, G.T. Fu, Z.M. Cui, Y.T. Li, D. Dang, X. Gao, Q. Zheng, J.B.Goodenough, Structurally ordered Fe3Pt nanoparticles on robust nitride support as a high performance catalyst for the oxygen reduction reaction, Adv. Energy Mater. 9 (3) (2019) 1803040. [2] W. Hong, X.R. Shen, J. Wang, X. Feng, W.J. Zhang, J. Li, Z.D.Wei, High-loading Pt-alloy catalysts for boosted oxygen reduction reaction performance, Chin. J. Chem. Eng. 48 (2022) 30–35. [3] J.S. Liang, Z.L. Zhao, N. Li, X.M. Wang, S.Z. Li, X. Liu, T.Y. Wang, G. Lu, D.L. Wang, B.J. Hwang, Y.H. Huang, D. Su, Q.Li, Oxygen reduction: biaxial strains mediated oxygen reduction electrocatalysis on Fenton reaction resistant L10-PtZn fuel cell cathode (adv. energy mater. 29/2020), Adv. Energy Mater. 10 (29) (2020) 2070124. [4] Q.X. Li, S.H. Zhang, W. Xuan, H.K. Zhou, W.Y. Tian, X.T. Deng, J.W. Huang, Z.Y. Xie, F. Liu, X.D. Liu, Y.L.Liang, Microbial synthesis of highly dispersed nano-Pd electrocatalyst for oxygen reduction reaction, Int. J. Hydrog. Energy 46 (53) (2021) 26886–26896. [5] E.C. Tyo, S. Vajda, Catalysis by clusters with precise numbers of atoms, Nat. Nanotechnol. 10 (7) (2015) 577–588. [6] Z. Xu, F.S. Xiao, S.K. Purnell, O. Alexeev, S. Kawi, S.E. Deutsch, B.C. Gates, Size-dependent catalytic activity of supported metal clusters, Nature 372 (6504) (1994) 346–348. [7] R.A. Van Santen, Complementary structure sensitive and insensitive catalytic relationships, Acc. Chem. Res. 42 (1) (2009) 57–66. [8] J. Haruyama, S. Takagi, K. Shimoda, I. Watanabe, K. Sodeyama, T. Ikeshoji, M.Otani, Thermodynamic analysis of Li-intercalated graphite by first-principles calculations with vibrational and configurational contributions, J. Phys. Chem. C 125 (51) (2021) 27891–27900. [9] P. Yin, X. Luo, Y.F. Ma, S.Q. Chu, S. Chen, X.S. Zheng, J.L. Lu, X.J. Wu, H.W. Liang, Sulfur stabilizing metal nanoclusters on carbon at high temperatures, Nat. Commun. 12 (1) (2021) 3135. [10] L.C. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles, Chem. Rev. 118 (10) (2018) 4981–5079. [11] Y. Lei, F. Mehmood, S. Lee, J. Greeley, B. Lee, S. Seifert, R.E. Winans, J.W. Elam, R.J. Meyer, P.C. Redfern, D. Teschner, R. Schlögl, M.J. Pellin, L.A. Curtiss, S. Vajda, Increased silver activity for direct propylene epoxidation via subnanometer size effects, Science 328 (5975) (2010) 224–228. [12] S. Vajda, M.J. Pellin, J.P. Greeley, C.L. Marshall, L.A. Curtiss, G.A. Ballentine, J.W. Elam, S. Catillon-Mucherie, P.C. Redfern, F. Mehmood, P. Zapol, Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane, Nat. Mater. 8 (3) (2009) 213–216. [13] M. Turner, V.B. Golovko, O.P.H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M.S. Tikhov, B.F.G. Johnson, R.M. Lambert, Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters, Nature 454 (7207) (2008) 981–983. [14] T.Y. Wang, D.L. Gao, J.Q. Zhuo, Z.W. Zhu, P. Papakonstantinou, Y. Li, M.X. Li, Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS2 particles, Chemistry 19 (36) (2013) 11939–11948. [15] M. Nesselberger, S. Ashton, J.C. Meier, I. Katsounaros, K.J.J. Mayrhofer, M. Arenz, The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models, J . Am . Chem . Soc . 133 (43) (2011) 17428–17433. [16] Z.Y. Yao, Y.L. Yuan, T. Cheng, L. Gao, T.L. Sun, Y.F. Lu, Y.G. Zhou, P.L. Galindo, Z.L. Yang, L. Xu, H. Yang, H.W. Huang, Anomalous size effect of Pt ultrathin nanowires on oxygen reduction reaction, Nano Lett. 21 (21) (2021) 9354–9360. [17] J. Gan, W. Luo, W.Y. Chen, J.N. Guo, Z.H. Xiang, B.X. Chen, F. Yang, Y.J. Cao, F. Song, X.Z. Duan, X.G.Zhou, Mechanistic understanding of size-dependent oxygen reduction activity and selectivity over Pt/CNT nanocatalysts, Eur. J. Inorg. Chem. 2019 (27) (2019) 3210–3217. [18] Q. Wang, Z.L. Zhao, Z. Zhang, T. Feng, R. Zhong, H. Xu, S.T. Pantelides, M. Gu, Sub-3 nm intermetallic ordered Pt3In clusters for oxygen reduction reaction, Adv. Sci. (Weinh) 7 (2) (2019) 1901279. [19] R. Nityananda, P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Reson 22 (8) (2017) 809–811. [20] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B Condens. Matter 50 (24) (1994) 17953–17979. [21] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B Condens. Matter 47 (1) (1993) 558–561. [22] G, Kresse, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1) (1996) 15–50. [23] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865–3868. [24] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27 (15) (2006) 1787–1799. [25] M.G. Li, Z.L. Zhao, Z.H. Xia, Y. Yang, M.C. Luo, Y.R. Huang, Y.J. Sun, Y.G. Chao, W.X. Yang, W.W. Yang, Y.S. Yu, G. Lu, S.J.Guo, Lavender-like Ga-doped Pt3Co nanowires for highly stable and active electrocatalysis, ACS Catal. 10 (5) (2020) 3018–3026. [26] W.A.Saidi, Density functional theory study of nucleation and growth of Pt nanoparticles on MoS2(001) surface, Cryst. Growth Des. 15 (2) (2015) 642–652. [27] D.Y. Chung, J.M. Yoo, Y.E. Sung, Highly durable and active Pt-based nanoscale design for fuel-cell oxygen-reduction electrocatalysts, Adv. Mater. 30 (42) (2018) e1704123. [28] J.W. Chen, Z.S. Zhang, H.M. Yan, G.J. Xia, H. Cao, Y.G. Wang, Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst, Nat. Commun. 13 (1) (2022) 1734. [29] H. Cao, G.J. Xia, J.W. Chen, H.M. Yan, Z. Huang, Y.G.Wang, Mechanistic insight into the oxygen reduction reaction on the Mn-N4/C single-atom catalyst: the role of the solvent environment, J. Phys. Chem. C 124 (13) (2020) 7287–7294. [30] J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H.Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B 108 (46) (2004) 17886–17892. [31] J. Greeley, I.L. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J.K. Nørskov, Alloys of platinum and early transition metals as oxygen reduction electrocatalysts, Nat. Chem. 1 (7) (2009) 552–556. [32] Y. Kadıoglu, A. Demirkıran, H. Yaraneri, O.Üzengi Aktürk, Investigation of and adsorption on (n=2-15, 18, 22, 24) clusters by using density functional theory, J. Alloys Compd. 591 (2014) 188–200. [33] Xianglei, Wang, Structures and structural evolution of Ptn (n = 15-24) clusters with combined density functional and genetic algorithm methods, Comput. Mater. Sci. 46 (1) (2009) 239–244. [34] L. Sementa, O. Andreussi, W.A. Goddard III, A. Fortunelli, Catalytic activity of Pt38 in the oxygen reduction reaction from first-principles simulations, Catal. Sci. Technol. 6 (18) (2016) 6901–6909. [35] Y.C. Wang, H.L. Chen, S.P. Ju, J.Y. Hsieh, C.Y.Tai, Dynamical behavior of Pt clusters on (5, 5) and (9, 0) single wall carbon nanotubes, Int. J. Energy Res. 38 (8) (2014) 1053–1059. [36] B. Narayanan, A. Kinaci, F.G. Sen, M.J. Davis, S.K. Gray, M.K.Y. Chan, S.K.R.S.Sankaranarayanan, Describing the diverse geometries of gold from nanoclusters to bulk—a first-principles-based hybrid bond-order potential, J. Phys. Chem. C 120 (25) (2016) 13787–13800. [37] J. Zhang, Z.P. Zhou, F. Wang, Y.F. Li, Y.Jing, Two-dimensional metal hexahydroxybenzene frameworks as promising electrocatalysts for an oxygen reduction reaction, ACS Sustainable Chem. Eng. 8 (19) (2020) 7472–7479. [38] J.H. Yuan, L.H. Li, W. Zhang, K.H. Xue, C. Wang, J. Wang, X.S. Miao, X.C. Zeng, Pt5Se4 monolayer: a highly efficient electrocatalyst toward hydrogen and oxygen electrode reactions, ACS Appl. Mater. Interfaces 12 (12) (2020) 13896–13903. [39] X.R. Zhu, J.X. Yan, M. Gu, T.Y. Liu, Y.F. Dai, Y.H. Gu, Y.F. Li, Activity origin and design principles for oxygen reduction on dual-metal-site catalysts: a combined density functional theory and machine learning study, J. Phys. Chem. Lett. 10 (24) (2019) 7760–7766. [40] G.X. Lin, Q.J. Ju, Y. Jin, X.H. Qi, W.J. Liu, F.Q. Huang, J.C.Wang, Suppressing dissolution of Pt-based electrocatalysts through the electronic metal-support interaction, Adv. Energy Mater. 11 (38) (2021) 2101050. [41] Y.R. Ying, K. Fan, X. Luo, J.L. Qiao, H.T. Huang, Unravelling the origin of bifunctional OER/ORR activity for single-atom catalysts supported on C2N by DFT and machine learning, J. Mater. Chem. A 9 (31) (2021) 16860–16867. [42] V. Tripkovic, J. Zheng, G.A. Rizzi, C. Marega, C. Durante, J. Rossmeisl, G.Granozzi, Comparison between the oxygen reduction reaction activity of Pd5Ce and Pt5Ce: the importance of crystal structure, ACS Catal. 5 (10) (2015) 6032-6040. |