Chinese Journal of Chemical Engineering ›› 2024, Vol. 70 ›› Issue (6): 33-53.DOI: 10.1016/j.cjche.2024.03.001
Previous Articles Next Articles
B. A. Abdulkadir1, R. S. R. Mohd Zaki2, A. T. Abd Wahab2, S. N. Miskan2, Anh-Tam Nguyen3, Dai-Viet N. Vo3, H. D. Setiabudi1,2
Received:
2023-12-23
Revised:
2024-02-21
Online:
2024-08-05
Published:
2024-06-28
Contact:
H.D. Setiabudi,E-mail:herma@umpsa.edu.my
Supported by:
B. A. Abdulkadir1, R. S. R. Mohd Zaki2, A. T. Abd Wahab2, S. N. Miskan2, Anh-Tam Nguyen3, Dai-Viet N. Vo3, H. D. Setiabudi1,2
通讯作者:
H.D. Setiabudi,E-mail:herma@umpsa.edu.my
基金资助:
B. A. Abdulkadir, R. S. R. Mohd Zaki, A. T. Abd Wahab, S. N. Miskan, Anh-Tam Nguyen, Dai-Viet N. Vo, H. D. Setiabudi. A concise review on surface and structural modification of porous zeolite scaffold for enhanced hydrogen storage[J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 33-53.
B. A. Abdulkadir, R. S. R. Mohd Zaki, A. T. Abd Wahab, S. N. Miskan, Anh-Tam Nguyen, Dai-Viet N. Vo, H. D. Setiabudi. A concise review on surface and structural modification of porous zeolite scaffold for enhanced hydrogen storage[J]. 中国化学工程学报, 2024, 70(6): 33-53.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2024.03.001
[1] J.Z. Zang, H.B. Yu, G.F. Liu, M.H. Hong, J.W. Liu, T.H. Chen, Research progress on modifications of zeolite Y for improved catalytic properties, Inorganics 11 (1) (2023) 22. [2] Ratnakar RR, Nikunj G, Kun Z, Casimir D, James F, Birol D, Vemuri B. Hydrogen supply chain and challenges in large-scale LH2 storage and transportation. Int. J. Hydrogen Energy 46(2021)24149-24168. [3] B.C. Tashie-Lewis, S.G. Nnabuife, Hydrogen production, distribution, storage and power conversion in a hydrogen economy-A technology review, Chem. Eng. J. Adv. 8 (2021) 100172. [4] R. Hren, A. Vujanovic, Y. Van Fan, J.J. Klemes, D. Krajnc, L. Cucek, Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment, Renew. Sustain. Energy Rev. 173 (2023) 113113. [5] A.M. Abdalla, S. Hossain, O.B. Nisfindy, A.T. Azad, M. Dawood, A.K. Azad, Hydrogen production, storage, transportation and key challenges with applications: A review, Energy Convers. Manag. 165 (2018) 602-627. [6] L. Schlapbach, A. Zuttel, Hydrogen-storage materials for mobile applications, Nature 414 (2001) 353-358. [7] K.C. Tan, Y.S. Chua, T. He, P. Chen, Strategies of thermodynamic alternation on organic hydrogen carriers for hydrogen storage application: A review, Green Energy Resour. 1 (2) (2023) 100020. [8] C. Wells, R. Minunno, H.Y. Chong, G.M. Morrison, Strategies for the adoption of hydrogen-based energy storage systems: An exploratory study in Australia, Energies 15 (16) (2022) 6015. [9] D. Colognesi, L. Ulivi, M. Zoppi, A.J. Ramirez-Cuesta, A. Orecchini, A.J. Karkamkar, M. Fichtner, E. Gil Bardaji, Z. Zhao-Karger, Hydrogen-storage materials dispersed into nanoporous substrates studied through incoherent inelastic neutron scattering, J. Alloys Compd. 538 (2012) 91-99. [10] J. Weitkamp, Zeolites as media for hydrogen storage, Int. J. Hydrog. Energy 20 (12) (1995) 967-970. [11] A. Azzouz, Achievement in hydrogen storage on adsorbents with high surface-to-bulk ratio-Prospects for Si-containing matrices, Int. J. Hydrog. Energy 37 (6) (2012) 5032-5049. [12] V. Indira, K. Abhitha, A review on recent developments in Zeolite A synthesis for improved carbon dioxide capture: Implications for the water-energy nexus, Energy Nexus 7 (2022) 100095. [13] G. Yang, L.J. Zhou, X.C. Liu, X.W. Han, X.H. Bao, Adsorption, reduction and storage of hydrogen within ZSM-5 zeolite exchanged with various ions: A comparative theoretical study, Microporous Mesoporous Mater. 161 (2012) 168-178. [14] Z. Ozturk, Hydrogen storage on lithium modified silica based CHAbazite type zeolite, A computational study, Int. J. Hydrog. Energy 43 (49) (2018) 22365-22376. [15] N.M. Musyoka, J.W. Ren, H.W. Langmi, B.C. North, M. Mathe, A comparison of hydrogen storage capacity of commercial and fly ash-derived zeolite X together with their respective templated carbon derivatives, Int. J. Hydrog. Energy 40 (37) (2015) 12705-12712. [16] Kim S, Song H, Kim C. Nanoconfinement effects of MCM-41 on the thermal decomposition of metal borohydrides. An. Sci.& Techl. 31(2018) 1-6. [17] Y.J. Wang, Application of different porous materials for hydrogen storage, J. Phys.: Conf. Ser. 2403 (1) (2022) 012012. [18] L.X. Ge, M.H. Qiu, Y.F. Zhu, S. Yang, W.Q. Li, W.T. Li, Z. Jiang, X.Q. Chen, Synergistic catalysis of Ru single-atoms and zeolite boosts high-efficiency hydrogen storage, Appl. Catal. B Environ. 319 (2022) 121958. [19] Y.H. Wang, K.D. Yin, S.S. Fan, X.M. Lang, C. Yu, S.L. Wang, S. Li, The molecular insight into the “Zeolite-ice” as hydrogen storage material, Energy 217 (2021) 119406. [20] B. Mondal, A. Kundu, B. Chakraborty, High-capacity hydrogen storage in zirconium decorated zeolite templated carbon: Predictions from DFT simulations, Int. J. Hydrog. Energy 47 (91) (2022) 38671-38681. [21] C.U. Deniz, Computational screening of zeolite templated carbons for hydrogen storage, Comput. Mater. Sci. 202 (2022) 110950. [22] M. Sunil Kumar, M.S. Alphin, P. Senthil Kumar, S. Raja, A review on zeolite catalyst for deNOx performance in ammonia-selective catalytic reduction, Fuel 334 (2023) 126828. [23] B.J. Wang, Y. Zhang, X.L. Fan, Deactivation of Cu SCR catalysts based on small-pore SSZ-13 zeolites: A review, Chem. Phys. Impact 6 (2023) 100207. [24] P.X. Yan, H.Y. Wang, Y.H. Liao, C.G. Wang, Zeolite catalysts for the valorization of biomass into platform compounds and biochemicals/biofuels: A review, Renew. Sustain. Energy Rev. 178 (2023) 113219. [25] U.Y. Qazi, R. Javaid, A. Ikhlaq, A.H. Khoja, F. Saleem, A comprehensive review on zeolite chemistry for catalytic conversion of biomass/waste into green fuels, Molecules 27 (23) (2022) 8578. [26] H.U. Hambali, A.A. Jalil, A.A. Abdulrasheed, T.J. Siang, Y. Gambo, A.A. Umar, Zeolite and clay based catalysts for CO2 reforming of methane to syngas: A review, Int. J. Hydrog. Energy 47 (72) (2022) 30759-30787. [27] H.Y. Chen, J. Lu, J.M. Fedeyko, A. Raj, Zeolite supported Pd catalysts for the complete oxidation of methane: A critical review, Appl. Catal. A Gen. 633 (2022) 118534. [28] N.J. Azhari, N. Nurdini, S. Mardiana, T. Ilmi, A.T.N. Fajar, I.G.B.N. Makertihartha, Subagjo, G.T.M. Kadja, Zeolite-based catalyst for direct conversion of CO2 to C2+ hydrocarbon: A review, J. CO2 Util. 59 (2022) 101969. [29] N. Chaihad, S. Karnjanakom, A. Abudula, G.Q. Guan, Zeolite-based cracking catalysts for bio-oil upgrading: A critical review, Resour. Chem. Mater. 1 (2) (2022) 167-183. [30] U. Menon, M. Rahman, S.J. Khatib, A critical literature review of the advances in methane dehydroaromatization over multifunctional metal-promoted zeolite catalysts, Appl. Catal. A Gen. 608 (2020) 117870. [31] E. Kianfar, S. Hajimirzaee, S. Mousavian, A.S. Mehr, Zeolite-based catalysts for methanol to gasoline process: A review, Microchem. J. 156 (2020) 104822. [32] Y. Yang, R. Xu, C. Zheng, Y. Long, S. Tang, Z. Sun, B. Huang, J.P. Chen, Hierarchical hollow zeolite fiber in catalytic applications: A critical review, Chemosphere 307 (Pt 3) (2022) 135899. [33] H.M. Aly, M.E. Moustafa, E.A. Abdelrahman, Synthesis of mordenite zeolite in absence of organic template, Adv. Powder Technol. 23 (6) (2012) 757-760. [34] A. Maghfirah, M.M. Ilmi, A.T.N. Fajar, G.T.M. Kadja, A review on the green synthesis of hierarchically porous zeolite, Mater. Today Chem. 17 (2020) 100348. [35] S. Narayanan, P. Tamizhdurai, V.L. Mangesh, C. Ragupathi, P. Santhana krishnan, A. Ramesh, Recent advances in the synthesis and applications of mordenite zeolite-review, RSC Adv. 11 (1) (2021) 250-267. [36] J.N. Bae, M. Dusselier, Synthesis strategies to control the Al distribution in zeolites: Thermodynamic and kinetic aspects, Chem. Commun. 59 (7) (2023) 852-867. [37] M. Krishnamurthy, M. Swaminathan, Synthesis of hierarchical micro-mesoporous ZSM-5 zeolite and its catalytic activity in benzylation of mesitylene, Silicon 15 (8) (2023) 3399-3405. [38] R.S. Bai, Y. Song, Y. Li, J.H. Yu, Creating hierarchical pores in zeolite catalysts, Trends Chem. 1 (6) (2019) 601-611. [39] M. Sai Bhargava Reddy, D. Ponnamma, K.K. Sadasivuni, B. Kumar, A.M. Abdullah, Carbon dioxide adsorption based on porous materials, RSC Adv. 11 (21) (2021) 12658-12681. [40] X.X. Ren, C.M. Zhang, L.F. Kou, R.X. Wang, Y.Q. Wang, R. Li, Hierarchical porous polystyrene-based activated carbon spheres for CO2 capture, Environ. Sci. Pollut. Res. 29 (9) (2022) 13098-13113. [41] R. Saab, C.M. Damaskinos, K. Polychronopoulou, A.M. Efstathiou, N. Charisiou, M. Goula, S.J. Hinder, M.A. Baker, A. Schiffer, Ni/CNT/Zeolite-Y composite catalyst for efficient heptane hydrocracking: Steady-state and transient kinetic studies, Appl. Catal. A Gen. 630 (2022) 118437. [42] Y.W. Sun, L.H. Wei, Z. Zhang, H.X. Zhang, Y.L. Li, Coke Formation over zeolite catalysts in light alkanes aromatization and anti-carbon-deposition strategies and perspectives: A review, Energy Fuels 37 (3) (2023) 1657-1677. [43] S.M. Al-Jubouri, N.A. Curry, S.M. Holmes, Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste, J. Hazard. Mater. 320 (2016) 241-251. [44] K.P. Cao, D. Fan, M.B. Gao, B.H. Fan, N. Chen, L.Y. Wang, P. Tian, Z.M. Liu, Recognizing the important role of surface barriers in MOR zeolite catalyzed DME carbonylation reaction, ACS Catal. 12 (1) (2022) 1-7. [45] G.A. Nasser, A.A. Al-Qadri, A.K. Jamil, I.A. Bakare, M.A. Sanhoob, O. Muraza, Z.H. Yamani, T. Yokoi, Q. Saleem, D. Alsewdan, Conversion of methanol to olefins over modified OSDA-free CHA zeolite catalyst, Ind. Eng. Chem. Res. 60 (33) (2021) 12189-12199. [46] T.T. Xu, G.G. Li, K.H. Zheng, X.Y. Zhang, X. Zhang, S.Q. Zhang, Effective reduction of nitric oxide over a core-shell Cu-SAPO-34@Fe-MOR zeolite catalyst, RSC Adv. 13 (1) (2023) 638-651. [47] A.A. Dabbawala, I. Ismail, B.V. Vaithilingam, K. Polychronopoulou, G. Singaravel, S. Morin, M. Berthod, Y. Al Wahedi, Synthesis of hierarchical porous Zeolite-Y for enhanced CO2 capture, Microporous Mesoporous Mater. 303 (2020) 110261. [48] J. Zhang, Y. Tan, W.J. Song, Zeolitic imidazolate frameworks for use in electrochemical and optical chemical sensing and biosensing: A review, Mikrochim. Acta 187 (4) (2020) 234. [49] C. Pagis, A.R. Morgado Prates, D. Farrusseng, N. Bats, A. Tuel, Hollow zeolite structures: An overview of synthesis methods, Chem. Mater. 28 (15) (2016) 5205-5223. [50] M. Xu, S.J. Chen, D.K. Seo, S.G. Deng, Evaluation and optimization of VPSA processes with nanostructured zeolite NaX for post-combustion CO2 capture, Chem. Eng. J. 371 (2019) 693-705. [51] H.B. Chen, Y.Q. Wang, C. Sun, X. Wang, C. Wang, Synthesis of hierarchical ZSM-5 zeolites with CTAB-containing seed silicalite-1 and its catalytic performance in methanol to propylene, Catal. Commun. 112 (2018) 10-14. [52] D.B. Li, Y.M. Chen, J.P. Hu, B.Q. Deng, X.W. Cheng, Y. Zhang, Synthesis of hierarchical chabazite zeolite via interzeolite transformation of coke-containing spent MFI, Appl. Catal. B Environ. 270 (2020) 118881. [53] M.Z. Kim, P. Sharma, Y. Kim, S.F. Alam, H.R. Lee, C.H. Cho, One-step template-free hydrothermal synthesis of partially Sr-incorporated hierarchical K-CHA zeolite microspheres, Microporous Mesoporous Mater. 286 (2019) 65-76. [54] B.R.S. De Araujo, J.A. Onrubia-Calvo, I. Stambouli, G. Petaud, J. Hidalgo-Carrillo, A. Nieto-Marquez, B. Pereda-Ayo, J.R. Gonzalez-Velasco, A. Caravaca, S. Gil, Towards the development of advanced hierarchical chabazite materials: Novel micro-mesoporous silicoaluminophosphate SAPO-34 zeolites, Mater. Today Commun. 31 (2022) 103580. [55] P.A. Alaba, Y.M. Sani, I.Y. Mohammed, Y.A. Abakr, W.M.A.W. Daud, Synthesis and characterization of sulfated hierarchical nanoporous faujasite zeolite for efficient transesterification of shea butter, J. Clean. Prod. 142 (2017) 1987-1993. [56] A. Al-Ani, R.J. Darton, S. Sneddon, V. Zholobenko, Nanostructured zeolites: The introduction of intracrystalline mesoporosity in basic faujasite-type catalysts, ACS Appl. Nano Mater. 1 (1) (2018) 310-318. [57] D. Verboekend, T.C. Keller, M. Milina, R. Hauert, J. Perez-Ramirez, Hierarchy brings function: Mesoporous clinoptilolite and L zeolite catalysts synthesized by tandem acid-base treatments, Chem. Mater. 25 (9) (2013) 1947-1959. [58] J. Kenvin, S. Mitchell, M. Sterling, R. Warringham, T.C. Keller, P. Crivelli, J. Jagiello, J. Perez-Ramirez, Quantifying the complex pore architecture of hierarchical faujasite zeolites and the impact on diffusion, Adv. Funct. Mater. 26 (31) (2016) 5621-5630. [59] S. Fernandez, M.L. Ostraat, J.A. Lawrence III, K. Zhang, Tailoring the hierarchical architecture of beta zeolites using base leaching and pore-directing agents, Microporous Mesoporous Mater. 263 (2018) 201-209. [60] J. Aguado, D.P. Serrano, J.M. Rodriguez, Zeolite Beta with hierarchical porosity prepared from organofunctionalized seeds, Microporous Mesoporous Mater. 115 (3) (2008) 504-513. [61] Y.J. Jin, C.C. Xiao, J.H. Liu, S.D. Zhang, S. Asaoka, S.L. Zhao, Mesopore modification of beta zeolites by sequential alkali and acid treatments: Narrowing mesopore size distribution featuring unimodality and mesoporous texture properties estimated upon a mesoporous volumetric model, Microporous Mesoporous Mater. 218 (2015) 180-191. [62] K.H. Chung, High-pressure hydrogen storage on microporous zeolites with varying pore properties, Energy 35 (5) (2010) 2235-2241. [63] L.Y. Molefe, N.M. Musyoka, J.W. Ren, H.W. Langmi, M. Mathe, P.G. Ndungu, Polymer-based shaping strategy for zeolite templated carbons (ZTC) and their metal organic framework (MOF) composites for improved hydrogen storage properties, Front. Chem. 7 (2019) 864. [64] Z.X. Yang, Y.D. Xia, R. Mokaya, Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials, J. Am. Chem. Soc. 129 (6) (2007) 1673-1679. [65] L. Regli, A. Zecchina, J.G. Vitillo, D. Cocina, G. Spoto, C. Lamberti, K.P. Lillerud, U. Olsbye, S. Bordiga, Hydrogen storage in Chabazite zeolite frameworks, Phys. Chem. Chem. Phys. 7 (17) (2005) 3197. [66] H. Wu, W. Zhou, T. Yildirim, Hydrogen storage in a prototypical zeolitic imidazolate framework-8, J Am Chem Soc 129 (17) (2007) 5314-5315. [67] B. Erdogan Alver, M.Sakizci, Hydrogen (H2) adsorption on natural and cation-exchanged clinoptilolite, mordenite and chabazite, Int. J. Hydrog. Energy 44 (13) (2019) 6748-6755. [68] J. Dong, X. Wang, H. Xu, Q. Zhao, J. Li, Hydrogen storage in several microporous zeolites, Int. J. Hydrog. Energy 32 (18) (2007) 4998-5004. [69] Y.D. Xia, R. Mokaya, D.M. Grant, G.S. Walker, A simplified synthesis of N-doped zeolite-templated carbons, the control of the level of zeolite-like ordering and its effect on hydrogen storage properties, Carbon 49 (3) (2011) 844-853. [70] N. Ismail, H. Tantawy, Microwave synthesis of Nano/Micronized zeolites from natural source: Evaluation of energy storage capacities, Egypt. J. Chem. (2020). [71] D.K. Panchariya, R.K. Rai, E. Anil Kumar, S.K. Singh, Core-shell zeolitic imidazolate frameworks for enhanced hydrogen storage, ACS Omega 3 (1) (2018) 167-175. [72] Z.J. Chen, K.O. Kirlikovali, K.B. Idrees, M.C. Wasson, O.K. Farha, Porous materials for hydrogen storage, Chem 8 (3) (2022) 693-716. [73] Isidro-Ortega FJ, Pacheco-Sanchez JH, Gonzalez-Ruiz A, Alejo R. DFT study of hydrogen storage on the metallic decoration of boron substitution on zeolite templated carbon vacancy. Int. J. Hydrogen Energy 45(2020)19505-19515. [74] H.W. Langmi, A. Walton, M.M. Al-Mamouri, S.R. Johnson, D. Book, J.D. Speight, P.P. Edwards, I. Gameson, P.A. Anderson, I.R. Harris, Hydrogen adsorption in zeolites A, X, Y and RHO, J. Alloys Compd. 356-357 (2003) 710-715. [75] S. Kumar, R. Bera, N. Das, J. Koh, Chitosan-based zeolite-Y and ZSM-5 porous biocomposites for H2 and CO2 storage, Carbohydr. Polym. 232 (2020) 115808. [76] A. Streb, M. Mazzotti, Adsorption for efficient low carbon hydrogen production: Part 1-adsorption equilibrium and breakthrough studies for H2/CO2/CH4 on zeolite 13X, Adsorption 27 (4) (2021) 541-558. [77] S. Karki, S.N. Chakraborty, Hydrogen adsorption in Si-LTA and LTA-4A zeolites: A Gibbs Ensemble Monte Carlo simulation study, Mater. Chem. Phys. 313 (2024) 128722. [78] Y.W. Li, R.T. Yang, Hydrogen storage in low silica type X zeolites, J. Phys. Chem. B 110 (34) (2006) 17175-17181. [79] S.Y. Lee, S.J. Park, Synthesis of zeolite-casted microporous carbons and their hydrogen storage capacity, J. Colloid Interface Sci. 384 (1) (2012) 116-120. [80] P. Roy, N. Das, Ultrasonic assisted synthesis of Bikitaite zeolite: A potential material for hydrogen storage application, Ultrason. Sonochem. 36 (2017) 466-473. [81] M. Fujiwara, Y. Fujio, H. Sakurai, H. Senoh, T. Kiyobayashi, Storage of molecular hydrogen into ZSM-5 zeolite in the ambient atmosphere by the sealing of the micropore outlet, Chem. Eng. Process. Process. Intensif. 79 (2014) 1-6. [82] E. Masika, R. Mokaya, Preparation of ultrahigh surface area porous carbons templated using zeolite 13X for enhanced hydrogen storage, Prog. Nat. Sci. Mater. Int. 23 (3) (2013) 308-316. [83] J.M. Liang, R.G. Zhang, Q. Zhao, J.X. Dong, B.J. Wang, J.P. Li, Molecular simulation of hydrogen storage in ion-exchanged Mazzite and Levyne zeolites, Comput. Theor. Chem. 980 (2012) 1-6. [84] M. Kapsi, C.M. Veziri, G. Pilatos, G.N. Karanikolos, G.E. Romanos, Zeolite-templated sub-nanometer carbon nanotube arrays and membranes for hydrogen storage and separation, Int. J. Hydrog. Energy 47 (87) (2022) 36850-36872. [85] A. Kundu, R. Trivedi, N. Garg, B. Chakraborty, Novel permeable material “yttrium decorated zeolite templated carbon” for hydrogen storage: Perspectives from density functional theory, Int. J. Hydrog. Energy 47 (66) (2022) 28573-28584. [86] H. Nishihara, F. Ohtake, A. Castro-Muniz, H. Itoi, M. Ito, Y. Hayasaka, J. Maruyama, J.N. Kondo, R. Osuga, T. Kyotani, Enhanced hydrogen chemisorption and spillover on non-metallic nickel subnanoclusters, J. Mater. Chem. A 6 (26) (2018) 12523-12531. [87] D.K. Panchariya, E.A. Kumar, S.K. Singh, Lithium-doped silica-rich MIL-101(Cr) for enhanced hydrogen uptake, Biotechnol. Lett. 14 (20) (2019) 3728-3735. [88] B. Li, Y.F. Liu, J. Gu, M.X. Gao, H.G. Pan, Synergetic effects of in situ formed CaH2 and LiBH4 on hydrogen storage properties of the Li-Mg-N-H system, Chem. Asian J. 8 (2) (2013) 374-384. [89] Y.J. Yang, Y.F. Liu, Y. Li, M.X. Gao, H.G. Pan, Synthesis and thermal decomposition behaviors of magnesium borohydride ammoniates with controllable composition as hydrogen storage materials, Chem. Asian J. 8 (2) (2013) 476-481. [90] Q.M. Sun, N. Wang, J.H. Yu, Advances in catalytic applications of zeolite-supported metal catalysts, Adv. Mater. 33 (51) (2021) e2104442. [91] A. Feliczak-Guzik, Hierarchical zeolites: Synthesis and catalytic properties, Microporous Mesoporous Mater. 259 (2018) 33-45. [92] M. Shamzhy, M. Opanasenko, P. Concepcion, A. Martinez, New trends in tailoring active sites in zeolite-based catalysts, Chem. Soc. Rev. 48 (4) (2019) 1095-1149. [93] P. Sanchez-Lopez, Y. Kotolevich, R.I. Yocupicio-Gaxiola, J. Antunez-Garcia, R.K. Chowdari, V. Petranovskii, S. Fuentes-Moyado, Recent advances in catalysis based on transition metals supported on zeolites, Front. Chem. 9 (2021) 716745. [94] Y.C. Chai, W.X. Shang, W.J. Li, G.J. Wu, W.L. Dai, N.J. Guan, L.D. Li, Noble metal particles confined in zeolites: Synthesis, characterization, and applications, Adv. Sci. 6 (16) (2019) 1900299. [95] J. Miao, Z.L. Lang, T.Y. Xue, Y. Li, Y.W. Li, J.J. Cheng, H. Zhang, Z.K. Tang, Revival of zeolite-templated nanocarbon materials: Recent advances in energy storage and conversion, Adv. Sci. 7 (20) (2020) 1335. [96] W. Su, Y.F. Zhu, J.G. Zhang, Y.N. Liu, Y. Yang, Q.F. Mao, L.Q. Li, Effect of multi-wall carbon nanotubes supported nano-nickel and TiF3 addition on hydrogen storage properties of magnesium hydride, J. Alloys Compd. 669 (2016) 8-18. [97] J. Kleperis, P. Lesnicenoks, L. Grinberga, G. Chikvaidze, J. Klavins, Zeolite as material for hydrogen storage in transport applications/ceolita ka udenraza uzglabasanas vides izpete, Latv. J. Phys. Tech. Sci. 50 (3) (2013) 59-64. [98] L. Zang, Q.Y. Zhang, L. Li, Y.K. Huang, X.Y. Chang, L.F. Jiao, H.T. Yuan, Y.J. Wang, Improved dehydrogenation properties of LiBH4 using catalytic nickel- and cobalt-based mesoporous oxide nanorods, Chem. 13 (1) (2018) 99-105. [99] P. Lesnicenoks, A. Sivars, L. Grinberga, J. Kleperis, Hydrogen adsorption in zeolite studied with sievert and thermogravimetric methods, IOP Conf. Ser.: Mater. Sci. Eng. 38 (2012) 012060. [100] M.D. Gao, L.Y. Yang, S.J. Yang, T. Jiang, F. Wu, T. Nagasaka, Simple aminated modified zeolite 4A synthesized using fly ash and its remediation of mercury contamination: Characteristics and mechanism, Sustainability 14 (23) (2022) 15924. [101] L.J. Zhu, X.F. Lv, S.Y. Tong, T.T. Zhang, Y.R. Song, Y.J. Wang, Z. Hao, C. Huang, D.H. Xia, Modification of zeolite by metal and adsorption desulfurization of organic sulfide in natural gas, J. Nat. Gas Sci. Eng. 69 (2019) 102941. [102] C. Flores, N. Batalha, N.R. Marcilio, V.V. Ordomsky, A.Y. Khodakov, Influence of impregnation and ion exchange sequence on metal localization, acidity and catalytic performance of cobalt BEA zeolite catalysts in fischer-tropsch synthesis, ChemCatChem 11 (1) (2019) 568-574. [103] D.W. Astuti, Mudasir, N.H. Aprilita, Preparation and characterization adsorbent based on zeolite from Klaten, Central Java, Indonesia, J. Phys.: Conf. Ser. 1156 (2019) 012002. [104] Q.M. Sun, B.W.J. Chen, N. Wang, Q. He, A. Chang, C.M. Yang, H. Asakura, T. Tanaka, M.J. Hulsey, C.H. Wang, J.H. Yu, N. Yan, Zeolite-encaged Pd-Mn nanocatalysts for CO2 hydrogenation and formic acid dehydrogenation, Angew. Chem. Int. Ed. 59 (45) (2020) 20183-20191. [105] G. Grzybek, K. Gora-Marek, K. Tarach, K. Pyra, P. Patulski, M. Greluk, G. Slowik, M. Rotko, A. Kotarba, Tuning the properties of the cobalt-zeolite nanocomposite catalyst by potassium: Switching between dehydration and dehydrogenation of ethanol, J. Catal. 407 (2022) 364-380. [106] N. Kosinov, C. Liu, E.J.M. Hensen, E.A. Pidko, Engineering of transition metal catalysts confined in zeolites, Chem. Mater. 30 (10) (2018) 3177-3198. [107] S.F. Li, H. Yan, Y.B. Liu, X.B. Chen, X. Zhou, X. Feng, C.H. Yang, Rational screening of transition metal single-atom-doped ZSM-5 zeolite catalyst for naphtha cracking from microkinetic analysis, Chem. Eng. J. 445 (2022) 136670. [108] F.J. Isidro-Ortega, J.H. Pacheco-Sanchez, L.A. Desales-Guzman, Hydrogen storage on lithium decorated zeolite templated carbon, DFT study, Int. J. Hydrog. Energy 42 (52) (2017) 30704-30717. [109] H. Zhou, J. Zhang, D. Ji, A.H. Yuan, X.P. Shen, Effect of catalyst loading on hydrogen storage capacity of ZIF-8/graphene oxide doped with Pt or Pd via spillover, Microporous Mesoporous Mater. 229 (2016) 68-75. [110] S. Youk. Molecular design of heteroatom-doped nanoporous carbons with controlled porosity and surface polarity for gas physisorption and energy storage. Chem. Eng. J. 22(2021)13421. [111] E. Kianfar Zeolites: Properties, Applications, Modification, and Selectivity. In book: Zeolites: Advances in Research and Applications. Nova Science Publishers, Inc., NY, USA, 2020. [112] D.G. Boer, J. Langerak, P.P. Pescarmona, Zeolites as selective adsorbents for CO2 separation, ACS Appl. Energy Mater. 6 (5) (2023) 2634-2656. [113] D.T. Bregante, J.Z. Tan, A. Sutrisno, D.W. Flaherty, Heteroatom substituted zeolite FAU with ultralow Al contents for liquid-phase oxidation catalysis, Catal. Sci. Technol. 10 (3) (2020) 635-647. [114] Q.L. Ke, T.J. Sun, X.L. Wei, Y. Guo, S.D. Wang, Enhanced trace carbon dioxide capture on heteroatom-substituted RHO zeolites under humid conditions, ChemSusChem 10 (21) (2017) 4207-4214. [115] T.T. Pang, X.Y. Yang, C.Y. Yuan, A.A. Elzatahry, A. Alghamdi, X. He, X.W. Cheng, Y.H. Deng, Recent advance in synthesis and application of heteroatom zeolites, Chin. Chemical Lett. 32 (1) (2021) 328-338. [116] A.J. Mallette, S. Hong, E.E. Freeman, S.A. Saslow, S. Mergelsberg, R.K. Motkuri, J.J. Neeway, G. Mpourmpakis, J.D. Rimer, Heteroatom manipulation of zeolite crystallization: Stabilizing Zn-FAU against interzeolite transformation, JACS Au 2 (10) (2022) 2295-2306. [117] H.W. Zhang, I. bin Samsudin, S. Jaenicke, G.K. Chuah, Zeolites in catalysis: Sustainable synthesis and its impact on properties and applications, Catal. Sci. Technol. 12 (19) (2022) 6024-6039. [118] W.T. Cao, Y.F. Huang, D. Li, W.H. Chen, Z.P. Qie, X.X. Pi, Q.J. Du, X.Y. Lai, Y.H. Li, N/S Co-doped microporous zeolite-templated carbon for efficient CO2 adsorption and separation, J. Energy Inst. 106 (2023) 101159. [119] W. Choi, R.K. Bera, S.W. Han, H. Park, T.W. Go, M. Choi, R. Ryoo, J.Y. Park, Doping effect of zeolite-templated carbon on electrical conductance and supercapacitance properties, Carbon 193 (2022) 42-50. [120] Han, Lv, Sun, Song, First-principles study on hydrogen storage performance of transition metal-doped zeolite template carbon, Crystals 9 (8) (2019) 397. [121] F.O. Erdogan, C. Celik, A.C. Turkmen, A.E. Sadak, E.Cucu, Hydrogen storage behavior of zeolite/graphene, zeolite/multiwalled carbon nanotube and zeolite/green plum stones-based activated carbon composites, J. Energy Storage 72 (2023) 108471. [122] T. Hai, F.A. Alenizi, A.H. Mohammed, B.S. Chauhan, B. Al-Qargholi, A.S.M. Metwally, M. Ullah, Machine learning-aided modeling of the hydrogen storage in zeolite-based porous media, Int. Commun. Heat Mass Transf. 145 (2023) 106848. [123] T. Silvester, W. Aan, M. Lenny, S. Muhammad, H. Latifa, F.M. Wiyanti, K.A. Amalia, S.K. Deni, A. Muhammad. Modification of natural zeolite from Bogor for hydrogen storage. Rasayan J. Chem. 16(2024)2345-2352. [124] A. Policicchio, G. Conte, S. Stelitano, C.P. Bonaventura, A.M. Putz, C. Ianasi, L. Almasy, Z.E. Horvath, R.G. Agostino, Hydrogen storage performances for mesoporous silica synthesized with mixed tetraethoxysilane and methyltriethoxysilane precursors in acidic condition, Colloids Surf. A Physicochem. Eng. Aspects 601 (2020) 125040. [125] A.G. Gebretatios, F. Banat, T. Witoon, C.K. Cheng, Synthesis of sustainable rice husk ash-derived nickel-decorated MCM-41 and SBA-15 mesoporous silica materials for hydrogen storage, Int. J. Hydrog. Energy 51 (2024) 255-266. [126] R.C. Muduli, N. Gupta, P. Sharma, P. Kale, Investigating reversible hydrogen storage and performance of porous Si by kinetic study and pressure composition isotherms at up to 20bar, Int. J. Hydrog. Energy 59 (2024) 447-456. |
[1] | Lixin Chen, Hui Zhang, Linxi Hou, Xin Ge. Metal-organic-framework-derived copper-based catalyst for multicomponent C-S coupling reaction [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 1-8. |
[2] | Jing Wen, Ruirui Yuan, Tao Jiang, Tangxia Yu, Yufan Zhang. Solvothermal synthesis and adsorption performance of layered boehmite using aluminum chloride and high-alumina fly ash [J]. Chinese Journal of Chemical Engineering, 2024, 70(6): 280-290. |
[3] | Huanxi Xu, Peihua Lin, Pei-Jun Liu, Hai-Gang Liu, Hui-Bin Guo, Chao-Xiang Wu, Ming Fang, Xu Zhang, Guan-Ping Jin. Removal of rubidium from brine by an integrated film of sulfonated polysulfone/graphene/potassium copper ferricyanide [J]. Chinese Journal of Chemical Engineering, 2024, 69(5): 112-121. |
[4] | Zhi Hu, Jiahong Wang, Tongtong Sun. Tetraethylenepentamine-functionalized magnetic mesoporous composites as a novel adsorbent for the removal Cr(III)-ethylenediaminetetraacetic acid in complex solution [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 16-26. |
[5] | Xi Quan, Jun Zhang, Linlin Yin, Wei Zuo, Yu Tian. Selective adsorption of tetracycline by β-CD-immobilized sodium alginate aerogel coupled with ultrafiltration for reclaimed water [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 27-34. |
[6] | Xing Zhong, Yubin Tan, Siyuan Wu, Caixia Hu, Kai Guo, Yongchuan Wu, Neng Yu, Mingyang Ma, Ying Dai. Efficient and rapid capture of uranium(VI) in wastewater via multi-amine modified β-cyclodextrin porous polymer [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 144-155. |
[7] | Xuexiang Fu, Xing Tang, Yi Xu, Xintao Zhou, Dengfeng Zhang. Microwave irradiation-induced alterations in physicochemical properties and methane adsorption capability of coals: An experimental study using carbon molecular sieve [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 165-180. |
[8] | Yifang Mi, Wenqiang Wang, Sen Zhang, Yalong Guo, Yufeng Zhao, Guojin Sun, Zhihai Cao. Ultra-high specific surface area activated carbon from Taihu cyanobacteria via KOH activation for enhanced methylene blue adsorption [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 106-116. |
[9] | Shunda lin, Yang Lu, Lin Zheng, Ling Long, Xuguang Jiang, Jianhua Yan. Mechanism study of Cu(II) adsorption from acidic wastewater by ultrasonic-modified municipal solid waste incineration fly ash [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 157-165. |
[10] | Shiqi Zhang, Shengzhi Gan, Baoyu Liu, Jinxiang Dong. Production of linear alkylbenzene over Ce containing Beta zeolites [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 220-227. |
[11] | Siang Chen, Wenling Wu, Zhaoyang Niu, Deqi Kong, Wenbin Li, Zhongli Tang, Donghui Zhang. High adsorption selectivity of activated carbon and carbon molecular sieve boosting CO2/N2 and CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 282-297. |
[12] | Jinhuang Cai, Shijie Hao, Yun Zhang, Xiaomin Wu, Zhenguo Li, Huawang Zhao. Co3O4 as an efficient passive NOx adsorber for emission control during cold-start of diesel engines [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 1-7. |
[13] | Kang He, Liangyu Zhu, Yanmei Wang. Dual-functional poly(2-methyl-2-oxazoline)/poly(2-(dimethylamine)ethyl methacrylate) mixed brushes with switchable protein adsorption and antibacterial properties [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 19-30. |
[14] | Haozhe Yi, Taotao Fu, Chunying Zhu, Youguang Ma. The flow behavior of droplet adsorption on a liquid–liquid interface accompanied by cross-linking reaction and phase separation in a microchannel [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 60-70. |
[15] | Zhuang Liu, Bo Gao, Haoyuan Han, Yuling Li, Haiyang Fu, Donghui Wei. A green cross-linking method for the preparation of renewable three-dimensional graphene sponges for efficient adsorption of Congo red dye [J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 84-93. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||