Chinese Journal of Chemical Engineering ›› 2024, Vol. 73 ›› Issue (9): 109-119.DOI: 10.1016/j.cjche.2024.05.030
Previous Articles Next Articles
Limin Wang1, Jinrong Duan1, Bei Liu1, Zhi Li2, Guangjin Chen1
Received:
2024-01-09
Revised:
2024-04-26
Accepted:
2024-05-07
Online:
2024-07-17
Published:
2024-11-21
Contact:
Bei Liu,E-mail:liub@cup.edu.cn;Zhi Li,E-mail:liz@cupk.edu.cn
Supported by:
Limin Wang1, Jinrong Duan1, Bei Liu1, Zhi Li2, Guangjin Chen1
通讯作者:
Bei Liu,E-mail:liub@cup.edu.cn;Zhi Li,E-mail:liz@cupk.edu.cn
基金资助:
Limin Wang, Jinrong Duan, Bei Liu, Zhi Li, Guangjin Chen. The effect of ethylene-vinyl acetate copolymer on the formation process of wax crystals and hydrates[J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 109-119.
Limin Wang, Jinrong Duan, Bei Liu, Zhi Li, Guangjin Chen. The effect of ethylene-vinyl acetate copolymer on the formation process of wax crystals and hydrates[J]. 中国化学工程学报, 2024, 73(9): 109-119.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2024.05.030
[1] A. Melchuna, X.W. Zhang, J.H. Sa, E. Abadie, P. Glenat, A.K. Sum, Flow risk index: a new metric for solid precipitation assessment in flow assurance management applied to gas hydrate transportability, Energy Fuels 34(8) (2020) 9371-9378. [2] Z.M. Aman, Hydrate risk management in gas transmission lines, Energy Fuels 35(18) (2021) 14265-14282. [3] Z.M. Liu, Y.X. Li, W.C. Wang, G.C. Song, Z.Y. Lu, Y.X. Ning, Wax and wax-hydrate deposition characteristics in single-, two-, and three-phase pipelines: a review, Energy Fuels 34(11) (2020) 13350-13368. [4] Q.H. Hu, X.Y. Wang, W.C. Wang, Y.X. Li, S. Liu, Growth and aggregation micromorphology of natural gas hydrate particles near gas-liquid interface under stirring condition, Chin. J. Chem. Eng. 40 (2021) 65-77. [5] I. Bogdanov, M. Kirgina, Y. Morozova, A. Altynov, Evaluation of the feasibility of a simultaneous change in the fractional composition and the involvement of depressant additives to obtain low-freezing diesel fuels, ACS Omega 7(7) (2022) 6086-6092. [6] F. Ansari, S.B. Shinde, K.G. Paso, J. Sjoblom, L. Kumar, Chemical additives as flow improvers for waxy crude oil and model oil: a critical review analyzing structure-efficacy relationships, Energy Fuels 36(7) (2022) 3372-3393. [7] B.F. Li, Z.Y. Guo, L.M. Zheng, E.X. Shi, B. Qi, A comprehensive review of wax deposition in crude oil systems: Mechanisms, influencing factors, prediction and inhibition techniques, Fuel 357 (2024) 129676. [8] S.Y. Yin, T.S. Yang, Y. Xue, M.Y. Xie, F.F. Chen, H.L. Lin, B. Dai, F. Gao, S. Han, Influence of tetradecyl methacrylate-N-α-methacrylamide copolymers as pour point depressants on the cold flow property of diesel fuel, Energy Fuels 34(10) (2020) 11976-11986. [9] B. Sun, B.T. Su, Y.Z. Zhao, B.W. Xu, Y. Xue, H.L. Lin, S. Han, Synthesis of methacrylate-vinyl acetate-N-phenylmethylpropionamide terpolymers as pour point depressants and combined with methyl palmitoleate to improve the cold flowability of waste cooking oil biodiesel blends, J. Mol. Liq. 368 (2022) 120796. [10] B.F. Alves, T.M. Rossi, L.C.C. Marques, B.G. Soares, E.F. Lucas, Composites of EVA and hydrophobically modified PAMAM dendrimer: Effect of composition on crystallization and flow assurance of waxy systems, Fuel 332 (2023) 125962. [11] F.F. Chen, J.B. Liu, T.S. Yang, S.Y. Yin, B.T. Su, M.Y. Xie, B. Dai, S. Han, Y. Xue, Influence of maleic anhydride-co-methyl benzyl acrylate copolymers modified with long-chain fatty amine and long-chain fatty alcohol on the cold flow properties of diesel fuel, Fuel 268 (2020) 117392. [12] E. Faujdar, H. Negi, R.K. Singh, V.K. Varshney, Study on biodegradable poly(α-olefins-co-α-pinene) architectures as pour point depressant and viscosity index improver additive for lubricating oils, J. Polym. Environ. 28(11) (2020) 3019-3027. [13] Y.Q. Ren, S.Q. Xia, Synthesis and mechanism analysis of a new oil soluble viscosity reducer for flow improvement of Chenping heavy oil, Chin. J. Chem. Eng. 45 (2022) 58-67. [14] H. Zhang, D.W. Liu, J.B. Wen, G.Y. Sun, C.X. Li, X.Y. Chen, H.H. Zhang, Z. Duan, Co-adsorption behaviors of asphaltenes and different flow improvers and their impacts on the interfacial viscoelasticity, Chin. J. Chem. Eng. 48 (2022) 149-157. [15] B. Yao, C.X. Li, F. Yang, G.Y. Sun, X. Xia, A.M. Ashmawy, H.B. Zeng, Advances in and perspectives on strategies for improving the flowability of waxy oils, Energy Fuels 36(15) (2022) 7987-8025. [16] A.L. de Castro Machado, E.F. Lucas, Poly(ethylene-co-vinyl acetate) (eva) copolymers as modifiers of oil wax crystallization, Petrol. Sci. Technol. 17 (9-10) (1999) 1029-1041. [17] F. Yang, Y.S. Zhao, J. Sjoblom, C.X. Li, K.G. Paso, Polymeric wax inhibitors and pour point depressants for waxy crude oils: a critical review, J. Dispers. Sci. Technol. 36(2) (2015) 213-225. [18] B. Yao, C.X. Li, Z.H. Mu, X.P. Zhang, F. Yang, G.Y. Sun, Y.S. Zhao, Ethylene-vinyl acetate copolymer (EVA) and resin-stabilized asphaltenes synergistically improve the flow behavior of model waxy oils. 3. effect of vinyl acetate content, Energy Fuels 32(8) (2018) 8374-8382. [19] Y. Liu, Z.N. Sun, G.L. Jing, S. Liu, Y.H. Yang, J.Q. Xu, Synthesis of chemical grafting pour point depressant EVAL-GO and its effect on the rheological properties of Daqing crude oil, Fuel Process. Technol. 223 (2021) 107000. [20] J.L. Zhang, M. Zhang, J.J. Wan, W. Li, Theoretical study of the prohibited mechanism for ethylene/vinyl acetate co-polymers to the wax crystal growth, J. Phys. Chem. B 112(1) (2008) 36-43. [21] L.M.S.L. Oliveira, R.C.P. Nunes, I.C. Melo, Y.L.L. Ribeiro, L.G. Reis, J.C.M. Dias, R.C.L. Guimaraes, E.F. Lucas, Evaluation of the correlation between wax type and structure/behavior of the pour point depressant, Fuel Process. Technol. 149 (2016) 268-274. [22] L.M.S.L. Oliveira, R.C.P. Nunes, L.M.B. Pessoa, L.G. Reis, L.S. Spinelli, E.F. Lucas, Influence of the chemical structure of additives poly(ethylene-co-vinyl acetate)-based on the pour point of crude oils, J. Appl. Polym. Sci. 137(33) (2020) e48969. [23] A.L.C. Machado, E.F. Lucas, G. Gonzalez, Poly(ethylene-co-vinyl acetate) (EVA) as wax inhibitor of a Brazilian crude oil: oil viscosity, pour point and phase behavior of organic solutions, J. Petrol. Sci. Eng. 32 (2-4) (2001) 159-165. [24] J.C. Cao, L. Liu, C. Liu, C. He, Phase transition mechanisms of paraffin in waxy crude oil in the absence and presence of pour point depressant, J. Mol. Liq. 345 (2022) 116989. [25] L. Dai, P.P. Rutkevych, S. Chakraborty, G. Wu, J. Ye, Y.H. Lau, H. Ramanarayan, D.T. Wu, Wax inhibition by ethylene-vinyl acetate using united atom molecular simulations, Energy Fuels 36(2) (2022) 861-870. [26] Q.B. Li, X.X. Deng, Y. Liu, Q.L. Cheng, C. Liu, Gelation of waxy crude oil system with ethylene-vinyl acetate on solid surface: a molecular dynamics study, J. Mol. Liq. 331 (2021) 115816. [27] S.K. Tong, P.F. Li, F.J. Lv, Z.Y. Wang, W.Q. Fu, J.B. Zhang, L.T. Chen, X.R. Wang, Promotion and inhibition effects of wax on methane hydrate formation and dissociation in water-in-oil emulsions, Fuel 337 (2023) 127211. [28] Y. Liu, B.H. Shi, L. Ding, Q.L. Ma, Y.C. Chen, S.F. Song, Y. Zhang, Y. Yong, X.F. Lv, H.H. Wu, W. Wang, J. Gong, Study of hydrate formation in water-in-waxy oil emulsions considering heat transfer and mass transfer, Fuel 244 (2019) 282-295. [29] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, GROMACS: Fast, flexible, and free, J. Comput. Chem. 26(16) (2005) 1701-1718. [30] J.L. Abascal, E. Sanz, R. Garcia Fernandez, C. Vega, A potential model for the study of ices and amorphous water: TIP4P/Ice, J. Chem. Phys. 122(23) (2005) 234511. [31] M.G. Martin, J. Siepmann, Transferable potentials for phase equilibria. 1. united-atom description of n-alkanes, J. Phys. Chem. B 102 (1998) 2569-2577. [32] L. Dai, P.P. Rutkevych, S. Chakraborty, G. Wu, J. Ye, Y.H. Lau, H. Ramanarayan, D.T. Wu, Molecular dynamics simulation of octacosane for phase diagrams and properties via the united-atom scheme, Phys. Chem. Chem. Phys. 23(37) (2021) 21262-21271. [33] J.M. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field, J. Comput. Chem. 25(9) (2004) 1157-1174. [34] A. Marradi, William R. shaffer, computer simulations of voting behavior, new york, Oxford university press, 1972, 164 pp.[s.p, Ital. Polit. Sci. Rev. Ital. Di Scienza Politica 4 (1974) 450-453. [35] F. Giberti, M. Salvalaglio, M. Mazzotti, M. Parrinello, Insight into the nucleation of urea crystals from the melt, Chem. Eng. Sci. 121 (2015) 51-59. [36] G.C.Q. da Silva, F.G. Oliveira, W.F. de Souza, M.C.K. de Oliveira, P.M. Esteves, B.A.C. Horta, Effects of paraffin, fatty acid and long alkyl chain phenol on the solidification of n-hexadecane under harsh subcooling condition: a molecular dynamics simulation study, Fuel 285 (2021) 119029. [37] C. Chen, D. Mira, X. Jiang, A molecular simulation study on transport properties of FAMEs in high-pressure conditions, Fuel 316 (2022) 123356. [38] G.A. Tribello, F. Giberti, G.C. Sosso, M. Salvalaglio, M. Parrinello, Analyzing and driving cluster formation in atomistic simulations, J. Chem. Theory Comput. 13(3) (2017) 1317-1327. [39] G.A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, G. Bussi, PLUMED 2: New feathers for an old bird, Comput. Phys. Commun. 185(2) (2014) 604-613. [40] Y.F. Gan, Q.L. Cheng, Z.H. Wang, J.W. Yang, W. Sun, Y. Liu, Molecular dynamics simulation of the microscopic mechanisms of the dissolution, diffusion and aggregation processes for waxy crystals in crude oil mixtures, J. Petrol. Sci. Eng. 179 (2019) 56-69. [41] Y. Gan, Q. Cheng, Z. Wang, J. Yang, W. Sun, Y. Liu, Molecular dynamics simulation of the nucleation and gelation process for a waxy crude oil multiphase system under different physical-chemical influencing factors, Energy Fuels 33 (2019) 7305-7320. [42] H.G. Cao, X.W. Cao, X.Y. Zhao, D. Guo, Y. Liu, J. Bian, Molecular dynamics simulation of wax molecules aggregational crystallization behavior during cooling of crude oil mixture, Case Stud. Therm. Eng. 37 (2022) 102298. [43] S. Wang, Q.L. Cheng, Y.F. Gan, Q.B. Li, C. Liu, W. Sun, Effect of wax composition and shear force on wax aggregation behavior in crude oil: a molecular dynamics simulation study, Molecules 27(14) (2022) 4432. [44] L.W. Cheng, K. Liao, Z. Li, J.L. Cui, B. Liu, F.G. Li, G.J. Chen, C.Y. Sun, The invalidation mechanism of kinetic hydrate inhibitors under high subcooling conditions, Chem. Eng. Sci. 207 (2019) 305-316. [45] L.M. Wang, X. Zheng, P. Xiao, X. Huang, B. Liu, Z. Li, G.J. Chen, C.Y. Sun, Effects of wax on the formation of methane hydrate in oil-dominate systems: Experiments and molecular dynamics simulations, Fuel 357 (2024) 129748. [46] F. Mahmoudinobar, C.L. Dias, GRADE: a code to determine clathrate hydrate structures, Comput. Phys. Commun. 244 (2019) 385-391. [47] S.L. Li, S.J. Zhang, K. Su, Q. Liu, H.N. Wu, Z.Y. Chang, Experimental study of the formation and decomposition of mixed gas hydrates in water-hydrocarbon system, Chem. Eng. J. 475 (2023) 146263. [48] Y.H. Sun, S.H. Jiang, S.L. Li, G.B. Zhang, W. Guo, Growth kinetics of hydrate formation from water-hydrocarbon system, Chin. J. Chem. Eng. 27(9) (2019) 2164-2179. [49] Z. Li, B. Liu, Y.H. Gong, G.J. Chen, T.D. Li, Molecular dynamics simulation to explore the impact of wax crystal on the formation of methane hydrate, J. Mol. Liq. 350 (2022) 118229. [50] Q.Y. Liao, B.H. Shi, S. Li, S.F. Song, Y.C. Chen, J.J. Zhang, H.Y. Yao, Q.P. Li, J. Gong, Molecular dynamics simulation of the effect of wax molecules on methane hydrate formation, Fuel 297 (2021) 120778. |
[1] | Yin Wu, Yan Sun. Rational surface charge engineering of haloalkane dehalogenase for boosting the enzymatic performance in organic solvent solutions [J]. Chinese Journal of Chemical Engineering, 2024, 65(1): 276-285. |
[2] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[3] | Fufeng Liu, Luying Jiang, Jingcheng Sang, Fuping Lu, Li Li. Molecular basis of cross-interactions between Aβ and Tau protofibrils probed by molecular simulations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 173-180. |
[4] | Pan Huang, Zekai Zhang, Yuxin Chen, Changwei Liu, Yong Zhang, Cheng Lian, Yajun Ding, Honglai Liu. Multi-scale simulation of diffusion behavior of deterrent in propellant [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 29-35. |
[5] | Jialei Sha, Chenyi Liu, Zhihong Ma, Weizhong Zheng, Weizhen Sun, Ling Zhao. Understanding the interfacial behaviors of benzene alkylation with butene using chloroaluminate ionic liquid catalyst: A molecular dynamics simulation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 44-52. |
[6] | Fang Chen, Tao Zhou, Lijie Li, Chongwei An, Jun Li, Duanlin Cao, Jianlong Wang. Morphology prediction of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) crystal in different solvent systems using modified attachment energy model [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 181-193. |
[7] | Nan Li, Jing-Yu Kan, Chang-Yu Sun, Guang-Jin Chen. Hydrate formation from liquid CO2 in a glass beads bed [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 185-191. |
[8] | Haolei Zhang, Mingcan Zhao, Yanping Li, Chengxiang Li, Wei Ge. Concentration fluctuation caused by reaction-diffusion coupling near catalytic active sites [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 254-263. |
[9] | Qingxia Xiong, Ying Ren, Yufei Xia, Guanghui Ma, Reiji Noda, Wei Ge. Molecular dynamics simulations of ovalbumin adsorption at squalene/water interface [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 369-378. |
[10] | Luchao Jin, Yongming He, Guobing Zhou, Qiuhao Chang, Liangliang Huang, Xingru Wu. Natural gas density under extremely high pressure and high temperature: Comparison of molecular dynamics simulation with corresponding state model [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 2-9. |
[11] | Shuqi Fang, Xinyue Zhang, Jingyi Zhang, Chun Chang, Pan Li, Jing Bai. Evaluation on the natural gas hydrate formation process [J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 881-888. |
[12] | Chungang Xu, Xiaosen Li, Kefeng Yan, Xuke Ruan, Zhaoyang Chen, Zhiming Xia. Research progress in hydrate-based technologies and processes in China: A review [J]. Chinese Journal of Chemical Engineering, 2019, 27(9): 1998-2013. |
[13] | Kefeng Yan, Xiaosen Li, Zhaoyang Chen, Yu Zhang, Chungang Xu, Zhiming Xia. Methane hydrate formation and dissociation behaviors in montmorillonite [J]. Chinese Journal of Chemical Engineering, 2019, 27(5): 1212-1218. |
[14] | Jiahui Li, Yudan Zhu, Yumeng Zhang, Qingwei Gao, Wei Zhu, Xiaohua Lu, Yijun Shi. Extra low friction coefficient caused by the formation of a solid-like layer: A new lubrication mechanism found through molecular simulation of the lubrication of MoS2 nanoslits [J]. Chin.J.Chem.Eng., 2018, 26(12): 2412-2419. |
[15] | Mohammad Mesbah, Ebrahim Soroush, Mashallah Rezakazemi. Development of a least squares support vector machine model for prediction of natural gas hydrate formation temperature [J]. , 2017, 25(9): 1238-1248. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||