[1] S.K S. Fan, D.M. Tsai, F. He, J.Y. Huang, C.H. Jen, Key parameter identification and defective wafer detection of semiconductor manufacturing processes using image processing techniques, IEEE Trans. Semicond. Manuf. 32 (4) (2019) 544-552. [2] J. Lyu, C.W. Liang, P.S. Chen, A data-driven approach for identifying possible manufacturing processes and production parameters that cause product defects: a thin-film filter company case study, IEEE Access 8 (2020) 49395-49411. [3] Y.B. Qi, J. Li, Process parameters influence on zone refining and thermodynamics analysis of 1, 2-diphenylethane, Chin. J. Chem. Eng. 42 (2022) 338-343. [4] Q.J. Zhang, Y.G. Ma, X.G. Yuan, A.W. Zeng, Box-Behnken experimental design for optimizing process parameters in carbonate-promoted direct thiophene carboxylation reaction with carbon dioxide, Chin. J. Chem. Eng. 50 (2022) 222-234. [5] L.J. Shen, X. Yan, L. Nie, W.Y. Xu, S.W. Miao, H.B. Wang, H.F. Poon, H.B. Qu, Chemometric identification of canonical metabolites linking critical process parameters to monoclonal antibody production during bioprocess development, Chin. J. Chem. Eng. 27 (5) (2019) 1171-1176. [6] S. Popereshnyak, A. Vecherkovskaya, Modeling and design of the industrial production process mathematical model, 2021 IEEE XVIIth International Conference on the Perspective Technologies and Methods in MEMS Design (MEMSTECH). Polyana (Zakarpattya), Ukraine. IEEE, (2021) 107-110. [7] A. Mariajayaprakash, T. Senthilvelan, R. Gnanadass, Optimization of process parameters through fuzzy logic and genetic algorithm - A case study in a process industry, Appl. Soft Comput. 30 (2015) 94-103. [8] M. Hosseini, H.H. Afrouzi, S. Yarmohammadi, H. Arasteh, D. Toghraie, A.J. Amiri, A. Karimipour, Optimization of FX-70 refrigerant evaporative heat transfer and fluid flow characteristics inside the corrugated tubes using multi-objective genetic algorithm, Chin. J. Chem. Eng. 28 (8) (2020) 2142-2151. [9] H.F. Ling, Y. Fu, M. Hua, A. Lu, An adaptive parameter controlled ant colony optimization approach for peer-to-peer vehicle and cargo matching, IEEE Access 9 (2021) 15764-15777. [10] P. Chauhan, M. Pant, K. Deep, Parameter optimization of multi-pass turning using chaotic PSO, Int. J. Mach. Learn. Cybern. 6 (2) (2015) 319-337. [11] D.L. Chen, Y.Q. Luo, X.G. Yuan, Refrigeration system synthesis based on de-redundant model by particle swarm optimization algorithm, Chin. J. Chem. Eng. 50 (2022) 412-422. [12] J.M. Hellerstein, Optimization techniques for queries with expensive methods, ACM Trans. Database Syst., 23 (2) (1998)113-157. [13] W.C. Na, K. Liu, H.C. Cai, W.R. Zhang, H.Y. Xie, D.Y. Jin, Efficient EM optimization exploiting parallel local sampling strategy and Bayesian optimization for microwave applications, IEEE Microw. Wirel. Compon. Lett. 31 (10) (2021) 1103-1106. [14] J. Chen, M.B. Alawieh, Y.B. Lin, M.L. Zhang, J. Zhang, Y.F. Guo, D.Z. Pan, Automatic selection of structure parameters of silicon on insulator lateral power device using Bayesian optimization, IEEE Electron. Device Lett. 41 (9) (2020) 1288-1291. [15] I. Nikoloska, O. Simeone, Bayesian active meta-learning for black-box optimization, 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC). Oulu, Finland. IEEE, (2022) 1-5. [16] J. Zhang, Q. Wang, W.F. Shen, Hyper-parameter optimization of multiple machine learning algorithms for molecular property prediction using hyperopt library, Chin. J. Chem. Eng. 52 (2022) 115-125. [17] W.G. Zhang, C.Z. Wu, H.Y. Zhong, Y.Q. Li, L. Wang, Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization, Geosci. Front. 12 (1) (2021) 469-477. [18] Y.B. Lin, M. Li, Y. Watanabe, T. Kimura, T. Matsunawa, S. Nojima, D.Z. Pan, Data efficient lithography modeling with transfer learning and active data selection, IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 38 (10) (2019) 1900-1913. [19] K. Weiss, T.M. Khoshgoftaar, D.D. Wang, A survey of transfer learning, J. Big Data 3 (1) (2016) 9. [20] D.L. Gao, C.J. Yang, B. Yang, Y. Chen, R.L. Deng, Minimax entropy-based co-training for fault diagnosis of blast furnace, Chin. J. Chem. Eng. 59 (2023) 231-239. [21] T. Theckel Joy, S. Rana, S. Gupta, S. Venkatesh, A flexible transfer learning framework for Bayesian optimization with convergence guarantee, Expert Syst. Appl. 115 (2019) 656-672. [22] M. Wistuba, N. Schilling, L. Schmidt-Thieme, Two-stage transfer surrogate model for automatic hyperparameter optimization. Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2016: 199-214. [23] M. Feurer, B. Letham, F. Hutter, E. Bakshy, Practical transfer learning for Bayesian optimization, Mach. Learn. (2018): 1802.02219. [24] M. Wistuba, N. Schilling, L. Schmidt-Thieme, Scalable Gaussian process-based transfer surrogates for hyperparameter optimization, Mach. Learn. 107 (1) (2018) 43-78. [25] V. Perrone, H.B. Shen, M. Seeger, C. Archambeau, R. Jenatton, Learning search spaces for Bayesian optimization: another view of hyperparameter transfer learning, Mach. Learn. (2019): 1909.12552. [26] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, E.P. Xing, Neural architecture search with Bayesian optimisation and optimal transport, Proceedings of the 32nd International Conference on Neural Information Processing Systems. December 3-8, 2018, Montreal, Canada. ACM, (2018) 2020-2029. [27] K. Kandasamy, W. Neiswanger, R. Zhang, A. Krishnamurthy, J. Schneider, B. Poczos, Myopic posterior sampling for adaptive goal oriented design of experiments, International Conference on Machine Learning, Long Beach, United States, 2019. [28] H.C. Lou, H.Y. Su, Y. Gu, L. Xie, G. Rong, W.F. Hou, Simultaneous optimization and control for polypropylene grade transition with two-layer hierarchical structure, Chin. J. Chem. Eng. 23 (12) (2015) 2053-2064. [29] Z.S. Fei, K.L. Liu, B. Hu, J. Liang, An efficient latent variable optimization approach with stochastic constraints for complex industrial process, Chin. J. Chem. Eng. 23 (10) (2015) 1670-1678. |