[1] H. Rodera, M.J. Bagajewicz, Multipurpose heat-exchanger networks for heat integration across plants, Ind. Eng. Chem. Res. 40 (23) (2001) 5585-5603. [2] Y.F. Wang, C.L. Chang, X. Feng, A systematic framework for multi-plants Heat Integration combining Direct and Indirect Heat Integration methods, Energy 90 (2015) 56-67. [3] C.L. Chang, X.L. Chen, Y.F. Wang, X. Feng, Simultaneous optimization of multi-plant heat integration using intermediate fluid circles, Energy 121 (2017) 306-317. [4] H.J. Pan, Y.H. Jin, S.J. Li, Multi-plant indirect heat integration based on the Alopex-based evolutionary algorithm, Energy 163 (2018) 811-821. [5] S.K. Nair, M. Soon, I.A. Karimi, Locating exchangers in an EIP-wide heat integration network, Comput. Chem. Eng. 108 (2018) 57-73. [6] X.D. Hong, Z.W. Liao, J.Y. Sun, B.B. Jiang, J.D. Wang, Y.R. Yang, Transshipment type heat exchanger network model for intra- and inter-plant heat integration using process streams, Energy 178 (2019) 853-866. [7] L.L. Liu, Y. Sheng, Y. Zhuang, L. Zhang, J. Du, Multiobjective optimization of interplant heat exchanger networks considering utility steam supply and various locations of interplant steam generation/utilization, Ind. Eng. Chem. Res. 59 (32) (2020) 14433-14446. [8] F. Ji, Y.C. Dong, X.J. Sun, L.L. Liu, J. Du, Industrial park heat integration considering centralized and distributed waste heat recovery cycle systems, Appl. Energy 318 (2022) 119207. [9] K.H. Chew, J.J. Klemes, S.R. Wan Alwi, Z.A. Manan, Process modifications to maximise energy savings in total site heat integration, Appl. Therm. Eng. 78 (2015) 731-739. [10] A.H. Tarighaleslami, T.G. Walmsley, M.J. Atkins, M.R.W. Walmsley, J.R. Neale, Heat Transfer Enhancement for site level indirect heat recovery systems using nanofluids as the intermediate fluid, Appl. Therm. Eng. 105 (2016) 923-930. [11] A. Kapil, I. Bulatov, R. Smith, J.K. Kim, Process integration of low grade heat in process industry with district heating networks, Energy 44 (1) (2012) 11-19. [12] S. Boldyryev, P.S. Varbanov, Low potential heat utilization of bromine plant via integration on process and Total Site levels, Energy 90 (2015) 47-55. [13] M.H. Bade, S. Bandyopadhyay, Minimization of thermal oil flow rate for indirect integration of multiple plants, Ind. Eng. Chem. Res. 53 (33) (2014) 13146-13156. [14] L.L. Liu, C.H. Wu, Y. Zhuang, L. Zhang, J. Du, Interplant heat integration method involving multiple intermediate fluid circles and agents: Single-period and multiperiod designs, Ind. Eng. Chem. Res. 59 (10) (2020) 4698-4711. [15] R.E. Swaney, I.E. Grossmann, An index for operational flexibility in chemical process design. Part I: Formulation and theory, AlChE. J. 31 (4) (1985) 621-630. [16] I.E. Grossmann, C.A. Floudas, Active constraint strategy for flexibility analysis in chemical processes, Comput. Chem. Eng. 11 (6) (1987) 675-693. [17] G.M. Ostrovsky, L.E.K. Achenie, Y.P. Wang, Y.M. Volin, A new algorithm for computing process flexibility, Ind. Eng. Chem. Res. 39 (7) (2000) 2368-2377. [18] J.L. Li, J. Du, Z.C. Zhao, P.J. Yao, Efficient method for flexibility analysis of large-scale nonconvex heat exchanger networks, Ind. Eng. Chem. Res. 54 (43) (2015) 10757-10767. [19] X.L. Zhang, H.C. Yin, Z.Y. Huo, Flexible synthesis of heat exchanger network with particle swarm optimization algorithm, Adv. Mater. Res. 214 (2011) 569-572. [20] J.L. Li, J. Du, Z.C. Zhao, P.J. Yao, Structure and area optimization of flexible heat exchanger networks, Ind. Eng. Chem. Res. 53 (29) (2014) 11779-11793. [21] Z. Novak, Z. Kravanja, Mixed-integer nonlinear programming problem process synthesis under uncertainty by reduced dimensional stochastic optimization, Ind. Eng. Chem. Res. 38 (7) (1999) 2680-2698. [22] W.C. Rooney, L.T. Biegler, Incorporating joint confidence regions into design under uncertainty, Comput. Chem. Eng. 23 (10) (1999) 1563-1575. [23] K. Zheng, H.H. Lou, J. Wang, F. Cheng, A method for flexible heat exchanger network design under severe operation uncertainty, Chem. Eng. Technol. 36 (5) (2013) 757-765. [24] Z. Novak Pintaric, Z. Kravanja, A methodology for the synthesis of heat exchanger networks having large numbers of uncertain parameters, Energy 92 (2015) 373-382. [25] L.Kang, Y.Liu, L.Wu, Design of flexible multiperiod heat exchanger networks with debottlenecking in subperiods, Chem. Eng. Sci. 185 (2018) 116-126. [26] S.W. Gu, L.L. Liu, L. Zhang, Y.Y. Bai, J. Du, Optimization-based framework for designing dynamic flexible heat exchanger networks, Ind. Eng. Chem. Res. 58 (15) (2019) 6026-6041. [27] S.W. Gu, L. Zhang, Y. Zhuang, J. Du, C. Shao, Integrated synthesis and control of heat exchanger networks with dynamic flexibility consideration, Appl. Therm. Eng. 218 (2023) 119304. [28] L.L. Liu, Y.Y. Bai, L. Zhang, S.W. Gu, J. Du, Synthesis of flexible heat exchanger networks considering gradually accumulated deposit and cleaning management, Ind. Eng. Chem. Res. 58 (27) (2019) 12124-12136. [29] Y.T. Tian, S.J. Li, Cost allocation evaluation of a multi-plant flexible heat exchanger network design based on fuzzy game, Comput. Chem. Eng. 175 (2023) 108262. [30] E. Kotjabasakis, B. Linnhoff, Sensitivity tables for the design of flexible processes (1)-How much contingency in heat exchanger networks is cost effective, Chem. Eng. Res. Des. 64 (1986) 197-211. [31] G. Towler, R. Sinnott, Chemical engineering design: Principles, practice and economics of plant and process design. Butterworth-Heinemann, 2007. |