[1] BP Statistical Review of World Energy. 2023, https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html. [2] X. He, G. Fan G, H. Wu, X. Zhang, T. Ma, Z. Shi, A. Zhou, Y Zhang, Advances in research on hydrogenation saturation of polycyclic aromatic hydrocarbons in coal tar, Coal Geology & Exploration 52 (2024) 1-10. [3] Z.H. Ma, X.Y. Wei, G.H. Liu, F.J. Liu, Z.M. Zong, Value-added utilization of high-temperature coal tar: A review, Fuel 292 (2021) 119954. [4] M.L. Wang, X.Q. Qian, L.Q. Xie, H.H. Fang, L.M. Ye, X.P. Duan, Y.Z. Yuan, Synthesis of a Ni phyllosilicate with controlled morphology for deep hydrogenation of polycyclic aromatic hydrocarbons, ACS Sustainable Chem. Eng. 7 (2) (2019) 1989-1997. [5] J.L. Gu, H. Li, Y.Q. Wu, S. Huang, S.Y. Wu, D.B. Chen, Preliminary investigations on the catalytic hydrogenation of polycyclic aromatic hydrocarbons via WGSR, Mol. Catal. 515 (2021) 111902. [6] J.J. Liu, H.F. Zhang, N.Y. Lu, X.L. Yan, B.B. Fan, R.F. Li, Influence of acidity of mesoporous ZSM-5-supported Pt on naphthalene hydrogenation, Ind. Eng. Chem. Res. 59 (3) (2020) 1056-1064. [7] Y. Chen, Z.M. Zhao, Z. Li, J.Y. Jing, W.Y. Li, Enhanced phenanthrene hydrogenation saturation performance of Ni-Co/NiAlOX catalysts and its catalytic mechanism, Fuel Process. Technol. 250 (2023) 107902. [8] M.H. Stockett, L. Avaldi, P. Bolognesi, J.N. Bull, L. Carlini, E. Carrascosa, J. Chiarinelli, R. Richter, H. Zettergren, Competitive dehydrogenation and backbone fragmentation of superhydrogenated PAHs: A laboratory study, Astrophys. J. 913 (1) (2021) 46. [9] B.Y. Bai, L.Y. Qiang, Y.L. Jia, X.X. Ma, Effect of nickel-based catalysts with nanolamellar structure on catalytic hydrogenation of pyrene: Combining experiment and calculation, Fuel 365 (2024) 131133. [10] A.F.S. Zanato, V.C. Silva, D.A. Lima, M.J. Jacinto, Bimetallic magnetic PtPd-nanoparticles as efficient catalyst for PAH removal from liquid media, Appl. Nanosci. 7 (8) (2017) 781-791. [11] G.Y. Zhang, Y.H. Wang, S.X. Dou, Y.Y. Dong, L.G. Ma, Q.Q. Zhu, X.J. Kong, MoOx regulating Ni-based catalyst anchored on N-doped carbon microspheres for catalytic hydrogenation of nitroarenes, Sep. Purif. Technol. 337 (2024) 126265. [12] M. Xu, M. Wei, Layered double hydroxide-based catalysts: Recent advances in preparation, structure, and applications, Adv. Funct. Mater. 28 (47) (2018) 1802943. [13] R.M. Claydon, L.A. Roman-Ramirez, J. Wood, Comparative study on the hydrogenation of naphthalene over both Al2O3-supported Pd and NiMo catalysts against a novel LDH-derived Ni-MMO-supported Mo catalyst, ACS Omega 6 (30) (2021) 20053-20067. [14] X.Y. Meng, Y.S. Yang, L.F. Chen, M. Xu, X. Zhang, M. Wei, A control over hydrogenation selectivity of furfural via tuning exposed facet of Ni catalysts, ACS Catal. 9 (5) (2019) 4226-4235. [15] H.L. Zhang, J. Dong, X.L. Qiao, J.R. Qin, H.F. Sun, A.Q. Wang, L.B. Niu, G.Y. Bai, In-situ generated highly dispersed nickel nanoclusters confined in MgAl mixed metal oxide platelets for benzoic acid hydrogenation, J. Catal. 372 (2019) 258-265. [16] Y. Tan, X.Y. Liu, L. Li, L.L. Kang, A.Q. Wang, T. Zhang, Effects of divalent metal ions of hydrotalcites on catalytic behavior of supported gold nanocatalysts for chemoselective hydrogenation of 3-nitrostyrene, J. Catal. 364 (2018) 174-182. [17] R. Claydon, J. Wood, A mechanistic study of layered-double hydroxide (LDH)-derived nickel-enriched mixed oxide (Ni-MMO) in ultradispersed catalytic pyrolysis of heavy oil and related petroleum coke formation, Energy Fuels 33 (11) (2019) 10820-10832. [18] S. Intachai, M. Na Nakorn, A. Kaewnok, P. Pankam, P. Sumanatrakul, N. Khaorapapong, Versatile inorganic adsorbent for efficient and practical removal of hexavalent chromium in water, Mater. Chem. Phys. 288 (2022) 126388. [19] Y.J. Li, T.T. Qi, Y.N. Dong, W.H. Hou, G.W. Chu, L.L. Zhang, B.C. Sun, Synthesized Ni/MMO catalysts via ultrathin Ni-Al-LDH in a rotating packed bed for hydrogenation of maleic anhydride, Fuel 326 (2022) 125035. [20] W.P. Han, M.X. Tang, J.L. Li, X.K. Li, J.W. Wang, L.G. Zhou, Y. Yang, Y.Q. Wang, H. Ge, Selective hydrogenolysis of 5-hydroxymethylfurfural to 2, 5-dimethylfuran catalyzed by ordered mesoporous alumina supported nickel-molybdenum sulfide catalysts, Appl. Catal. B Environ. 268 (2020) 118748. [21] N. Wang, K. Shen, L.H. Huang, X.P. Yu, W.Z. Qian, W. Chu, Facile route for synthesizing ordered mesoporous Ni-Ce-Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas, ACS Catal. 3 (7) (2013) 1638-1651. [22] X.L. Wang, Z. Zhao, Z.T. Chen, J.M. Li, A.J. Duan, C.M. Xu, D.W. Gao, Z.K. Cao, P. Zheng, J.Y. Fan, Effect of synthesis temperature on structure-activity-relationship over NiMo/γ-Al2O3 catalysts for the hydrodesulfurization of DBT and 4, 6-DMDBT, Fuel Process. Technol. 161 (2017) 52-61. [23] A.J. Pamphile-Adrian, F.B. Passos, P.P. Florez-Rodriguez, Systematic study on the properties of nickel aluminate (NiAl2O4) as a catalytic precursor for aqueous phase hydrogenolysis of glycerol, Catal. Today 394 (2022) 499-509. [24] Z.G. Qiu, Q. Li, L. Shi, Z.Q. Li, L. Ding, L.F. Zhao, Effect of Ni loading and impregnation method on the hydrodenitrogenation of coal tar over Ni-Mo/γ-Al2O3, Energy Sources Part A Recovery Util. Environ. Eff. (2020) 1-13. [25] N. Abdel Karim Aramouni, J. Zeaiter, W. Kwapinski, J.J. Leahy, M.N. Ahmad, Molybdenum and nickel-molybdenum nitride catalysts supported on MgO-Al2O3 for the dry reforming of methane, J. CO2 Util. 44 (2021) 101411. [26] S. Song, S.K. Yao, J.H. Cao, L. Di, G.J. Wu, N.J. Guan, L.D. Li, Heterostructured Ni/NiO composite as a robust catalyst for the hydrogenation of levulinic acid to γ-valerolactone, Appl. Catal. B Environ. 217 (2017) 115-124. [27] Z.M. Shi, C.S. Wan, M. Huang, J.H. Pan, R.Z. Luo, D.L. Li, L.L. Jiang, Characterization and catalytic behavior of hydrotalcite-derived Ni-Al catalysts for methane decomposition, Int. J. Hydrog. Energy 45 (35) (2020) 17299-17310. [28] W. Liu, Y.S. Yang, L.F. Chen, E.Z. Xu, J.M. Xu, S. Hong, X. Zhang, M. Wei, Atomically-ordered active sites in NiMo intermetallic compound toward low-pressure hydrodeoxygenation of furfural, Appl. Catal. B Environ. 282 (2021) 119569. [29] L.H. Zhao, K.G. Fang, D. Jiang, D.B. Li, Y.H. Sun, Sol-gel derived Ni-Mo bimetallic carbide catalysts and their performance for CO hydrogenation, Catal. Today 158 (3-4) (2010) 490-495. [30] L.L. Ji, J.Y. Wang, L.X. Guo, Z.F. Chen, In situ O2-emission assisted synthesis of molybdenum carbide nanomaterials as an efficient electrocatalyst for hydrogen production in both acidic and alkaline media, J. Mater. Chem. A 5 (10) (2017) 5178-5186. [31] D.S. Kim, K. Segawa, T. Soeya, I.E. Wachs, Surface structures of supported molybdenum oxide catalysts under ambient conditions, J. Catal. 136 (2) (1992) 539-553. [32] P.M. Yeletsky, T.R. Reina, O.A. Bulavchenko, A.A. Saraev, E.Y. Gerasimov, O.O. Zaikina, J.M. Bermudez, P. Arcelus-Arrillaga, V.A. Yakovlev, M. Millan, Phenanthrene catalytic cracking in supercritical water: Effect of the reaction medium on NiMo/SiO2 catalysts, Catal. Today 329 (2019) 197-205. [33] R.G. Kukushkin, O.A. Bulavchenko, V.V. Kaichev, V.A. Yakovlev, Influence of Mo on catalytic activity of Ni-based catalysts in hydrodeoxygenation of esters, Appl. Catal. B Environ. 163 (2015) 531-538. [34] P. Zhang, X.J. Yang, X.L. Hou, J.L. Mi, Z.Z. Yuan, J. Huang, C. Stampfl, Active sites and mechanism of the direct conversion of methane and carbon dioxide to acetic acid over the zinc-modified H-ZSM-5 zeolite, Catal. Sci. Technol. 9 (22) (2019) 6297-6307. [35] Q. Zhao, W.H. Yang, J.J. Luo, C.H. Liang, Regulation of Ni/Al2O3 catalysts by metal deposition procedures for selective hydrogenation of adiponitrile, New J. Chem. 46 (4) (2022) 1498-1506. [36] R.Y. Zhao, L.Y. Zeng, J. Liang, C.G. Liu, Interaction between Ni promoter and Al2O3 support and its effect on the performance of NiMo/γ-Al2O3 catalyst in hydrodesulphurization, J. Fuel Chem. Technol. 44 (5) (2016) 564-569. [37] C.W. Dong, C.L. Yin, T.T. Wu, Z.Y. Wu, D. Liu, C.G. Liu, Study on the modification of unsupported hydrodesulfurization catalysts by the ZSM-5 zeolite nanoclusters, Appl. Catal. A Gen. 582 (2019) 117113. [38] Y.D. Chen, C.M. Li, J.Y. Zhou, S.T. Zhang, D.M. Rao, S. He, M. Wei, D.G. Evans, X. Duan, Metal phosphides derived from hydrotalcite precursors toward the selective hydrogenation of phenylacetylene, ACS Catal. 5 (10) (2015) 5756-5765. |