[1] X.R. Du, Y.K. Huang, X.L. Pan, B. Han, Y. Su, Q.K. Jiang, M.R. Li, H.L. Tang, G. Li, B.T. Qiao, Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts, Nat. Commun. 11 (2020) 5811. [2] Y.N. Gao, F.K. Chiang, S.J. Li, L. Zhang, P. Wang, E.J.M. Hensen, Influence of hematite morphology on the CO oxidation performance of Au/α-Fe2O3, Chin. J. Catal. 42 (4) (2021) 658-665. [3] S. Barkaoui, Z.W. Li, C.H. Cao, X.R. Gu, Q. Zeng, B. Lumbers, G. Li, Investigation of catalytic activity of Au/Co3O4(001) and Au/Co3O4(111) in the CO oxidation reaction, New J. Chem. 48 (2) (2024) 631-639. [4] S. Barkaoui, Y.R. Wang, Y.F. Zhang, X.R. Gu, Z.W. Li, B.L. Wang, A. Baiker, G. Li, Z. Zhao, Critical role of NiO support morphology for high activity of Au/NiO nanocatalysts in CO oxidation, iScience 27 (7) (2024) 110255. [5] B. Shao, J.Y. Zhang, J.H. Huang, B.T. Qiao, Y. Su, S. Miao, Y. Zhou, D. Li, W.X. Huang, W.J. Shen, Size-dependency of gold nanoparticles on TiO2 for CO oxidation, Small Meth. 2 (12) (2018) 1800273. [6] X.T. Wang, T. Ouyang, L. Wang, J.H. Zhong, T.Y. Ma, Z.Q. Liu, Redox-inert Fe3+ ions in octahedral sites of co-Fe spinel oxides with enhanced oxygen catalytic activity for rechargeable zinc-air batteries, Angew. Chem. Int. Ed 58 (38) (2019) 13291-13296. [7] Y.X. Liu, H.X. Dai, J.G. Deng, S.H. Xie, H.G. Yang, W. Tan, W. Han, Y. Jiang, G.S. Guo, Mesoporous Co3O4-supported gold nanocatalysts: highly active for the oxidation of carbon monoxide, benzene, toluene, and o-xylene, J. Catal. 309 (2014) 408-418. [8] L. Song, Y.H. Liu, S.H. Zhang, C.G. Zhou, K. Ma, H.R. Yue, Tuning oxygen vacancies of the Co3O4 catalyst through an ethanol-assisted hydrothermal method for low-temperature CO oxidation, Ind. Eng. Chem. Res. 61 (40) (2022) 14783-14792. [9] Q.Q. Shi, Z.W. Li, C.H. Cao, G. Li, S. Barkaoui, Robust 2 nm-sized gold nanoclusters on Co3O4 for CO oxidation, Nanoscale Adv. 5 (19) (2023) 5385-5389. [10] F.F. Wang, Y.L. Shen, H.J. Huang, Polymer nanofilm-coated co-Mn oxide nanoparticle catalysts for transmembrane CO oxidation at 50 ℃ under moisture-rich conditions, ACS Appl. Nano Mater. 3 (5) (2020) 4187-4196. [11] C.L. He, Z.H. Chen, W.J. Xu, Y. Shi, S.S. Ruan, C.L. Qin, L.D. Zhang, Ultralow doping of Zr species into Co3O4 catalyst enhance the CO oxidation performance, Mol. Catal. 564 (2024) 114343. [12] Y.L. Shen, J. Yu, X.Z. Xiao, X.M. Guo, D.S. Mao, H.J. Huang, G.Z. Lu, Polymer nanofilm-coated catalysis: an approach for enhancing water-resistance of co-Fe oxide nano-catalysts under moisture-rich condition, J. Catal. 352 (2017) 466-479. [13] M. Hinojosa-Reyes, R. Camposeco-Solis, R. Zanella, V. Rodriguez-Gonzalez, F. Ruiz, Gold nanoparticle: enhanced CO oxidation at low temperatures by using Fe-doped TiO2 as support, Catal. Lett. 148 (1) (2018) 383-396. [14] X.F. Zhu, B.Y. Bai, B. Zhou, S.F. Ji, Co3O4 nanoparticles with different morphologies for catalytic removal of ethyl acetate, Catal. Commun. 156 (2021) 106320. [15] C.C. Jin, Y. Zhou, S.B. Han, W.J. Shen, Water-assisted low-temperature oxidation of CO at the Au-Fe2O3 interface, J. Phys. Chem. C 125 (47) (2021) 26031-26038. [16] Y.F. Zheng, Q.L. Liu, C.P. Shan, Y. Su, K.X. Fu, S.C. Lu, R. Han, C.F. Song, N. Ji, D.G. Ma, Defective ultrafine MnOx nanoparticles confined within a carbon matrix for low-temperature oxidation of volatile organic compounds, Environ. Sci. Technol. 55 (8) (2021) 5403-5411. [17] L. Sun, M. Feng, Y. Peng, X. Zhao, Y.Q. Shao, X. Yue, S.M. Huang, Constructing oxygen vacancies by doping Mo into spinel Co3O4 to trigger a fast oxide path mechanism for acidic oxygen evolution reaction, J. Mater. Chem. A 12 (15) (2024) 8796-8804. [18] S.S. Wang, Q.H. Li, M. Chen, W.H. Pu, Y.L. Wu, M.D. Yang, Electrochemical capacitance performance of Fe-doped Co3O4/graphene nanocomposite: investigation on the effect of iron, Electrochim. Acta 215 (2016) 473-482. [19] L. Fang, H.J. Zhang, Y. Zhang, L. Liu, Y. Wang, Design and synthesis of two-dimensional porous Fe-doped LiCoPO4 nano-plates as improved cathode for lithium ion batteries, J. Power Sources 312 (2016) 101-108. [20] N. Liu, J. Wei, J. Xu, Y. Yu, J.F. Yu, Y. Han, K. Wang, J.I. Orege, Q.J. Ge, J. Sun, Elucidating the structural evolution of highly efficient Co-Fe bimetallic catalysts for the hydrogenation of CO2 into olefins, Appl. Catal. B Environ. 328 (2023) 122476. [21] C.C. Yin, Y.N. Liu, Q.N. Xia, S.F. Kang, X. Li, Y.G. Wang, L.F. Cui, Oxygen vacancy-rich nitrogen-doped Co3O4 nanosheets as an efficient water-resistant catalyst for low temperature CO oxidation, J. Colloid Interface Sci. 553 (2019) 427-435. [22] J.B. Luo, X.Z. Wang, J. Zhang, Y. Zhou, Fe-doped Co3O4 anchored on hollow carbon nanocages for efficient electrocatalytic oxygen evolution, J. Fuel Chem. Technol. 51 (5) (2023) 571-579. [23] G.Y. Zhao, J. Li, X.R. Niu, K. Tang, S.P. Wang, W.S. Zhu, X.Q. Ma, M.Y. Ru, Y.Z. Yang, Facile synthesis of Mn-doped Fe2O3 nanostructures: enhanced CO catalytic performance induced by manganese doping, New J. Chem. 40 (4) (2016) 3491-3498. [24] W.J. Wan, X.W. Nie, M.J. Janik, C.S. Song, X.W. Guo, Adsorption, dissociation, and spillover of hydrogen over Au/TiO2 catalysts: the effects of cluster size and metal-support interaction from DFT, J. Phys. Chem. C 122 (31) (2018) 17895-17916. [25] W.Q. Song, A.S. Poyraz, Y.T. Meng, Z. Ren, S.Y. Chen, S.L. Suib, Mesoporous Co3O4 with controlled porosity: inverse micelle synthesis and high-performance catalytic CO oxidation at -60 ℃, Chem. Mater. 26 (15) (2014) 4629-4639. [26] G.N. Li, L. Li, Y.S. Li, J.L. Shi, A highly moisture-resistant Fe-doped mesoporous Co3O4 catalyst for efficient low-temperature CO oxidation, New J. Chem. 39 (3) (2015) 1742-1748. [27] J. Li, G.Z. Lu, G.S. Wu, D.S. Mao, Y.L. Guo, Y.Q. Wang, Y. Guo, The role of iron oxide in the highly effective Fe-modified Co3O4 catalyst for low-temperature CO oxidation, RSC Adv. 3 (30) (2013) 12409-12416. [28] Y.F. Zhang, Z.W. Li, C.H. Cao, T. Hammedi, A. Waheed, B. Sami, Z. Zhao, G. Li, Support effects on nickel hydroxide and oxide nanorods supported Au nanoparticles for CO oxidation, Catal. Lett. 154 (3) (2024) 1026-1036. [29] Q. Zhao, Y.F. Zheng, C.F. Song, Q.L. Liu, N. Ji, D.G. Ma, X.B. Lu, Novel monolithic catalysts derived from in situ decoration of Co3O4 and hierarchical Co3O4@MnOx on Ni foam for VOC oxidation, Appl. Catal. B Environ. 265 (2020) 118552. [30] S. Wang, S. Wang, X.P. Zong, S.D. Wang, X.L. Dong, CO oxidation with Pt catalysts supported on different supports: a comparison of their sulfur tolerance properties, Appl. Catal. A Gen. 654 (2023) 119083. [31] J. Bae, D. Shin, H. Jeong, B.S. Kim, J.W. Han, H. Lee, Highly water-resistant La-doped Co3O4 catalyst for CO oxidation, ACS Catal. 9 (11) (2019) 10093-10100. [32] G.T. Chai, W.D. Zhang, L.F. Liotta, M.Q. Li, Y.L. Guo, A. Giroir-Fendler, Total oxidation of propane over Co3O4-based catalysts: elucidating the influence of Zr dopant, Appl. Catal. B Environ. 298 (2021) 120606. [33] J.Q. Shan, C. Ye, S.M. Chen, T.L. Sun, Y. Jiao, L.M. Liu, C.Z. Zhu, L. Song, Y. Han, M. Jaroniec, Y.H. Zhu, Y. Zheng, S.Z. Qiao, Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation, J. Am. Chem. Soc. 143 (13) (2021) 5201-5211. [34] J.M. Qian, X. Liu, C.L. Zhong, G.F. Xu, H.J. Li, W.H. Zhou, B. You, F. Wang, D.Q. Gao, D.L. Chao, Enhanced stability and narrowed D-band gap of Ce-doped Co3O4 for rechargeable aqueous Zn-air battery, Adv. Funct. Mater. 33 (9) (2023) 2212021. [35] Z.L. Ma, Z.Y. Wen, C.P. Gu, Y.J. Yin, Doping of nonmetal Se in Fe2O3 nanowire array-based photoanodes for water oxidation, ACS Appl. Nano Mater. 4 (12) (2021) 13297-13304. [36] X.J. Wei, B. Shao, Y. Zhou, Y. Li, C.C. Jin, J.Y. Liu, W.J. Shen, Geometrical structure of the gold-iron(III) oxide interfacial perimeter for CO oxidation, Angew. Chem. Int. Ed 57 (35) (2018) 11289-11293. [37] B. Zheng, G. Liu, L.L. Geng, J.Y. Cui, S.J. Wu, P. Wu, M.J. Jia, W.F. Yan, W.X. Zhang, Role of the FeOx support in constructing high-performance Pt/FeOx catalysts for low-temperature CO oxidation, Catal. Sci. Technol. 6 (5) (2016) 1546-1554. |