[1] J.O.A. Matias, G.A.C. Le Roux, Plantwide optimization via real-time optimization with persistent parameter adaptation, J. Process. Contr. 92 (2020) 62-78. [2] H. Zhao, M.G. Ierapetritou, G. Rong, Production planning optimization of an ethylene plant considering process operation and energy utilization, Comput. Chem. Eng. 87 (2016) 1-12. [3] F.F. Shen, L. Zhao, M.H. Wang, W.L. Du, F. Qian, Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty, Appl. Energy 307 (2022) 118148. [4] K.X. Bi, M.Y. Yan, S.Y. Zhang, T. Qiu, Three-scale integrated optimization model of furnace simulation, cyclic scheduling, and supply chain of ethylene plants, Chin. J. Chem. Eng. 44 (2022) 29-40. [5] S.L. Jiang, Q. Liu, I.D.L. Bogle, Z. Zheng, A self-learning based dynamic multi-objective evolutionary algorithm for resilient scheduling problems in steelmaking plants, IEEE Trans. Autom. Sci. Eng. 20 (2) (2023) 832-845. [6] N. Nedjah, L. de Macedo Mourelle, M.S.D. Lizarazu, Evolutionary multi-objective optimization applied to industrial refrigeration systems for energy efficiency, Energies 15 (15) (2022) 5575. [7] D.L. Chen, Y.Q. Luo, X.G. Yuan, Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm, Chin. J. Chem. Eng. 58 (2023) 244-255. [8] Z.Q. Wang, D.K. He, H.T. Nie, Operational optimization of copper flotation process based on the weighted Gaussian process regression and index-oriented adaptive differential evolution algorithm, Chin. J. Chem. Eng. 66 (2024) 167-179. [9] A. Kasis, K. Khan, M.M. Polycarpou, S. Timotheou, Privacy of distributed optimality schemes in power networks, IEEE Trans. Smart Grid 14 (5) (2023) 4021-4034. [10] Y.N. Jiang, P. Sauerteig, B. Houska, K. Worthmann, Distributed optimization using ALADIN for MPC in smart grids, IEEE Trans. Contr. Syst. Technol. 29 (5) (2021) 2142-2152. [11] Q.S. Liu, Z.G. Zeng, Y.C. Jin, Distributed machine learning, optimization and applications, Neurocomputing 489 (2022) 486-487. [12] P. Di Lorenzo, S. Barbarossa, S. Sardellitti, Distributed signal processing and optimization based on in-network subspace projections, IEEE Trans. Signal Process. 68 (2020) 2061-2076. [13] T. Wang, Z.C. Ye, X.J. Wang, Z.M. Li, W.L. Du, Improved distributed optimization algorithm and its application in energy saving of ethylene plant, Chem. Eng. Sci. 251 (2022) 117449. [14] W.H. Liu, T. Wang, Z.M. Li, Z.C. Ye, X. Peng, W.L. Du, Distributed optimization subject to inseparable coupled constraints: a case study on plant-wide ethylene process, IEEE Trans. Ind. Inform. 19 (4) (2023) 5412-5421. [15] M. Assran, M. Rabbat, Asynchronous gradient-push, (2018): 1803.08950. [16] J.Q. Zhang, K.Y. You, AsySPA: an exact asynchronous algorithm for convex optimization over digraphs, IEEE Trans. Autom. Contr. 65 (6) (2020) 2494-2509. [17] Y. Tian, Y. Sun, G. Scutari, Achieving linear convergence in distributed asynchronous multiagent optimization, IEEE Trans. Autom. Contr. 65 (12) (2020) 5264-5279. [18] H.Q. Li, H.Q. Cheng, Z. Wang, G.C. Wu, Distributed nesterov gradient and heavy-ball double accelerated asynchronous optimization, IEEE Trans. Neural Netw. Learn. Syst. 32 (12) (2021) 5723-5737. [19] W.T. Lin, C.J. Li, Distributed asynchronous non-smooth optimization with coupled equality and bounded constraints, Neural Comput. Appl. 36 (6) (2024) 2853-2866. [20] J.Z. Wang, G.Q. Hu, Composite optimization with coupling constraints via penalized proximal gradient method in asynchronous networks, IEEE Trans. Autom. Contr. 69 (1) (2024) 69-84. [21] R. Nie, W.L. Du, T. Wang, Z.M. Li, S.P. He, Distributed asynchronous optimization of multiagent systems: convergence analysis and its application, IEEE Trans. Ind. Inform. 20 (6) (2024) 8983-8992. [22] R. Chauhan, R. Sartape, N. Minocha, I. Goyal, M.R. Singh, Advancements in environmentally sustainable technologies for ethylene production, Energy Fuels 37 (17) (2023) 12589-12622. [23] R. Xin, U.A. Khan, Distributed heavy-ball: a generalization and acceleration of first-order methods with gradient tracking, IEEE Trans. Autom. Contr. 65 (6) (2020) 2627-2633. [24] W. Tao, G.W. Wu, Q. Tao, Momentum acceleration in the individual convergence of nonsmooth convex optimization with constraints, IEEE Trans. Neural Netw. Learn. Syst. 33 (3) (2022) 1107-1118. [25] G.N. Qu, N. Li, Accelerated distributed nesterov gradient descent, IEEE Trans. Autom. Contr. 65 (6) (2020) 2566-2581. |