[1] S. Liu, X.T. Pan, H.Y. Liu, Two-dimensional nanomaterials for photothermal therapy, Angew. Chem. Int. Ed. 59 (15) (2020) 5890-5900. [2] R.S. Narayan, P. Molenaar, J. Teng, F.M.G. Cornelissen, I. Roelofs, R. Menezes, R. Dik, T. Lagerweij, Y. Broersma, N. Petersen, J.A.M. Soto, E. Brands, P. van Kuiken, M.C. Lecca, K.J. Lenos, S.G.J.G. In 't Veld, W. van Wieringen, F.F. Lang, E. Sulman, R. Verhaak, B.G. Baumert, L.J.A. Stalpers, L. Vermeulen, C. Watts, D. Bailey, B.J. Slotman, R. Versteeg, D. Noske, P. Sminia, B.A. Tannous, T. Wurdinger, J. Koster, B.A. Westerman, A cancer drug atlas enables synergistic targeting of independent drug vulnerabilities, Nat. Commun. 11 (1) (2020) 2935. [3] M.M. Xu, L.Q. Zhou, L. Zheng, Q. Zhou, K. Liu, Y.H. Mao, S.S. Song, Sonodynamic therapy-derived multimodal synergistic cancer therapy, Cancer Lett. 497 (2021) 229-242. [4] H.T. Sun, Q. Zhang, J.C. Li, S.J. Peng, X.L. Wang, R. Cai, Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy, Nano Today 37 (2021) 101073. [5] W.C. Wu, Y.Y. Pu, J.L. Shi, Nanomedicine-enabled chemotherapy-based synergetic cancer treatments, J. Nanobiotechnol. 20 (1) (2022) 4. [6] D. Plana, A.C. Palmer, P.K. Sorger, Independent drug action in combination therapy: implications for precision oncology, Cancer Discov. 12 (3) (2022) 606-624. [7] B. Ji, M.J. Wei, B. Yang, Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy, Theranostics 12 (1) (2022) 434-458. [8] D. Gao, X. Guo, X. Zhang, S. Chen, Y. Wang, T. Chen, G. Huang, Y. Gao, Z. Tian, Z. Yang, Multifunctional phototheranostic nanomedicine for cancer imaging and treatment, Mater. Today Bio 5 (2019) 100035. [9] D. Jingchao Li, D. Yu Luo, P. Kanyi Pu, Electromagnetic nanomedicines for combinational cancer immunotherapy, Angew. Chem. Int. Ed. 60 (23) (2021) 12682-12705. [10] M. Overchuk, R.A. Weersink, B.C. Wilson, G. Zheng, Photodynamic and photothermal therapies: synergy opportunities for nanomedicine, ACS Nano 17 (9) (2023) 7979-8003. [11] F.S. Li, J.Q. Yan, C. Wei, Y. Zhao, X.W. Tang, L. Xu, B. He, Y. Sun, J. Chang, Y. Liang, “Cicada out of the shell” deep penetration and blockage of the HSP90 pathway by ROS-responsive supramolecular gels to augment trimodal synergistic therapy, Adv. Sci. 11 (25) (2024) e2401214. [12] N. Xu, F. Xu, Y. Yao, C. Zhang, W. Sun, J. Du, J. Fan, X. Peng. A GSH-activated photosensitizer prodrug for fluorescence imaging-guided chemo-photodynamic therapy. Sensor. Actuat. B-Chem. 2024, 410, 135664. [13] L. Yu, M.Z. Zhang, J.L. He, X.W. Sun, P.H. Ni, A nanomedicine composed of polymer-ss-DOX and polymer-Ce6 prodrugs with monoclonal antibody targeting effect for anti-tumor chemo-photodynamic synergetic therapy, Acta Biomater. 179 (2024) 272-283. [14] W.L. Liang, C. Han, D.L. Zhang, C.L. Liu, M.H. Zhu, F.J. Xu, C. Fang, S. Zhang, C.Z. Liu, Y.X. Li, Copper-coordinated nanoassemblies based on photosensitizer-chemo prodrugs and checkpoint inhibitors for enhanced apoptosis-cuproptosis and immunotherapy, Acta Biomater. 175 (2024) 341-352. [15] B. Li, W. Wang, L. Zhao, D. Yan, X. Li, Q. Gao, J. Zheng, S. Zhou, S. Lai, Y. Feng, J. Zhang, H. Jiang, C. Long, W. Gan, X. Chen, D. Wang, B.Z. Tang, Y. Liao, Multifunctional AIE nanosphere-based “nanobomb” for trimodal imaging-guided photothermal/photodynamic/pharmacological therapy of drug-resistant bacterial infections, ACS Nano 17 (5) (2023) 4601-4618. [16] W.S. Chen, J. Ouyang, H. Liu, M. Chen, K. Zeng, J.P. Sheng, Z.J. Liu, Y.J. Han, L.Q. Wang, J. Li, L. Deng, Y.N. Liu, S.J. Guo, Black phosphorus nanosheet-based drug delivery system for synergistic photodynamic/photothermal/chemotherapy of cancer, Adv. Mater. 29 (5) (2017) 1603864. [17] X. Wei, C. Zhang, S. He, J. Huang, J. Huang, S.S. Liew, Z. Zeng, K. Pu, A dual-locked activatable phototheranostic probe for biomarker-regulated photodynamic and photothermal cancer therapy, Angew. Chem. Int. Ed. 61 (26) (2022) e202202966. [18] Y. Yang, D.M. Zhu, Y. Liu, B. Jiang, W. Jiang, X.Y. Yan, K.L. Fan, Platinum-carbon-integrated nanozymes for enhanced tumor photodynamic and photothermal therapy, Nanoscale 12 (25) (2020) 13548-13557. [19] H.H. Zhao, Z.H. Wang, X.T. He, J.X. Li, K. Chen, Y.H. Pan, W.B. Hu, Q.L. Fan, Q.M. Shen, NIR-II light excited heptamethine cyanine/prodrug/albumin nanoparticles for photothermal/photodynamic/chemo combination therapy, ACS Appl. Nano Mater., (2024). [20] Y. Chen, Z.T. Lu, D. Wang, Multifunctional nanoplatform for single NIR laser-regulated efficient PDT/PTT/chemotherapy, Biomacromolecules 25 (2) (2024) 1038-1046. [21] K. Ding, L. Wang, J. Zhu, D. He, Y. Huang, W. Zhang, Z. Wang, A. Qin, J. Hou, B.Z. Tang, Photo-enhanced chemotherapy performance in bladder cancer treatment via albumin coated AIE aggregates, ACS Nano 16 (5) (2022) 7535-7546. [22] Y.L. Xiang, D.Y. Tang, L.L. Yan, L.L. Deng, X.H. Wang, X.Y. Liu, Q.H. Zhou, Poly-l-lysine modified MOF nanoparticles with pH/ROS sensitive CIP release and CUR triggered photodynamic therapy against drug-resistant bacterial infection, Int. J. Biol. Macromol. 266 (Pt 2) (2024) 131330. [23] A.L.V. Zumaya, V.S. Pavlickova, S. Rimpelova, M. Stejdirova, M. Fulem, I. Krizova, P. Ulbrich, P. Rezanka, F. Hassouna, PLGA-based nanocarriers for combined delivery of colchicine and purpurin 18 in cancer therapy: multimodal approach employing cancer cell spheroids, Int. J. Pharm. 657 (2024) 124170. [24] C. Chen, L. Yang, Y. Peng, W.J. Zhang, X.X. Yang, W. Zhou, Autophagic blockage by metformin-loaded PLGA nanoparticles causes cell cycle arrest of HepG2 cells, Nanomedicine 19 (1) (2024) 43-58. [25] K. Ding, H.L. Tian, L. Li, Z.H. Wang, S.S. Liu, N. Ding, E.C. Nice, C.H. Huang, J.K. Bao, W. Gao, Z. Shi, Drug repurposing-based nanoplatform via modulating autophagy to enhance chemo-phototherapy against colorectal cancer, J. Nanobiotechnol. 22 (1) (2024) 202. [26] L. Feng, C. Li, L. Liu, Z. Wang, Z. Chen, J. Yu, W. Ji, G. Jiang, P. Zhang, J. Wang, B.Z. Tang, Acceptor planarization and donor rotation: a facile strategy for realizing synergistic cancer phototherapy via type I PDT and PTT, ACS Nano 16 (3) (2022) 4162-4174. [27] W.L. Liu, T. Liu, M.Z. Zou, W.Y. Yu, C.X. Li, Z.Y. He, M.K. Zhang, M.D. Liu, Z.H. Li, J. Feng, X.Z. Zhang, Aggressive man-made red blood cells for hypoxia-resistant photodynamic therapy, Adv. Mater. 30 (35) (2018) e1802006. [28] B. Du, X.S. Yan, X.Y. Ding, Q.H. Wang, Q. Du, T.G. Xu, G.P. Shen, H.C. Yao, J. Zhou, Oxygen self-production red blood cell carrier system for MRI mediated cancer therapy: ferryl-hb, sonodynamic, and chemical therapy, ACS Biomater. Sci. Eng. 4 (12) (2018) 4132-4143. [29] P.M. Glassman, E.D. Hood, L.T. Ferguson, Z.M. Zhao, D.L. Siegel, S. Mitragotri, J.S. Brenner, V.R. Muzykantov, Red blood cells: the metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers, Adv. Drug Deliv. Rev. 178 (2021) 113992. [30] P.M. Glassman, C.H. Villa, A. Ukidve, Z.M. Zhao, P. Smith, S. Mitragotri, A.J. Russell, J.S. Brenner, V.R. Muzykantov, Vascular drug delivery using carrier red blood cells: focus on RBC surface loading and pharmacokinetics, Pharmaceutics 12 (5) (2020) 440. [31] J.W. Zhang, Z.J. Tian, X.X. Ji, F.S. Zhang, Fabrication mechanisms of lignin nanoparticles and their ultraviolet protection ability in PVA composite film, Polymers 14 (19) (2022) 4196. [32] C.Y. Cao, H. Zou, N. Yang, H. Li, Y. Cai, X.J. Song, J.J. Shao, P. Chen, X.Z. Mou, W.J. Wang, X.C. Dong, Fe3O4/Ag/Bi2MoO6 photoactivatable nanozyme for self-replenishing and sustainable cascaded nanocatalytic cancer therapy, Adv. Mater. 33 (52) (2021) e2106996. [33] H.L. Yang, B.L. Xu, S.S. Li, Q.Y. Wu, M.Z. Lu, A.L. Han, H.Y. Liu, A photoresponsive nanozyme for synergistic catalytic therapy and dual phototherapy, Small 17 (10) (2021) e2007090. [34] M.M. Chen, J.T. Song, J.L. Zhu, G.B. Hong, J. An, E.T. Feng, X.J. Peng, F.L. Song, A dual-nanozyme-catalyzed cascade reactor for enhanced photodynamic oncotherapy against tumor hypoxia, Adv. Healthc. Mater. 10 (21) (2021) e2101049. [35] S.M. Dong, Y.S. Dong, T. Jia, S.K. Liu, J. Liu, D. Yang, F. He, S.L. Gai, P.P. Yang, J. Lin, GSH-depleted nanozymes with hyperthermia-enhanced dual enzyme-mimic activities for tumor nanocatalytic therapy, Adv. Mater. 32 (42) (2020) e2002439. [36] J.Q. Le, F. Yang, X.H. Song, K.K. Feng, L.W. Tong, M.D. Yin, W.Z. Zhang, Y.Q. Lin, H. Wu, J.W. Shao, A hemoglobin-based oxygen-carrying biomimetic nanosystem for enhanced chemo-phototherapy and hypoxia alleviation of hepatocellular carcinoma, J. Ind. Eng. Chem. 123 (2023) 330-341. [37] P.Y. Wang, X.D. Wang, Q. Luo, Y. Li, X.X. Lin, L.L. Fan, Y. Zhang, J.F. Liu, X.L. Liu, Fabrication of red blood cell-based multimodal theranostic probes for second near-infrared window fluorescence imaging-guided tumor surgery and photodynamic therapy, Theranostics 9 (2) (2019) 369-380. [38] B.K. Johnson, R.K. Prud’homme, Chemical processing and micromixing in confined impinging jets, AlChE. J. 49 (9) (2003) 2264-2282. [39] J. Tang, X.J. Tong, Y.J. Chen, Y. Wu, Z.Y. Zheng, A. Basak Kayitmazer, A. Ahmad, N. Ramzan, J.T. Yang, Q.C. Huang, Y.S. Xu, Deposition and water repelling of temperature-responsive nanopesticides on leaves, Nat. Commun. 14 (1) (2023) 6401. [40] K.D. Ristroph, S.A. McManus, G. Shetye, S.H. Cho, D. Lee, Z. Szekely, P.J. Sinko, S.G. Franzblau, R.K. Prud’homme, Targeted antitubercular peptide nanocarriers prepared by flash NanoPrecipitation with hydrophobic ion pairing, Adv. Mater. Technol. 7 (11) (2022) 2101748. [41] N.J. Caggiano, S.K. Nayagam, L.Z. Wang, B.K. Wilson, P. Lewis, S. Jahangir, R.D. Priestley, R.K. Prud’homme, K.D. Ristroph, Sequential Flash NanoPrecipitation for the scalable formulation of stable core-shell nanoparticles with core loadings up to 90, Int. J. Pharm. 640 (2023) 122985. [42] Z.J. Liu, Z.C. Le, L.J. Lu, Y. Zhu, C.B. Yang, P.F. Zhao, Z.Y. Wang, J. Shen, L.X. Liu, Y.M. Chen, Scalable fabrication of metal-phenolic nanoparticles by coordination-driven flash nano complexation for cancer theranostics, Nanoscale 11 (19) (2019) 9410-9421. [43] Z.Y. He, Z.J. Liu, H.K. Tian, Y.Z. Hu, L.X. Liu, K.W. Leong, H.Q. Mao, Y.M. Chen, Scalable production of core-shell nanoparticles by flash nano complexation to enhance mucosal transport for oral delivery of insulin, Nanoscale 10 (7) (2018) 3307-3319. [44] Z.Y. He, T.Q. Nie, Y.Z. Hu, Y. Zhou, J.C. Zhu, Z.J. Liu, L.X. Liu, K.W. Leong, Y.M. Chen, H.Q. Mao, A polyphenol-metal nanoparticle platform for tunable release of liraglutide to improve blood glycemic control and reduce cardiovascular complications in a mouse model of type II diabetes, J. Contr. Release 318 (2020) 86-97. [45] L.L. Sun, Z.C. Le, S.R. He, J.Y. Liu, L.X. Liu, K.W. Leong, H.Q. Mao, Z.J. Liu, Y.M. Chen, Flash fabrication of orally targeted nano complexes for improved transport of salmon calcitonin across the intestine, Mol. Pharm. 17 (3) (2020) 757-768. [46] W. S. Saad, R. K. Prud’homme. NanoToday principles of nanoparticle formation by flash nanoprecipitation, Nano Today, 2016, 11, 212-227. [47] J. Tao, S.F. Chow, Y. Zheng, Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles, Acta Pharm. Sin. B 9 (1) (2019) 4-18. [48] Z.Y. Luo, M.B. Zheng, P.F. Zhao, Z. Chen, F. Siu, P. Gong, G.H. Gao, Z.H. Sheng, C.F. Zheng, Y.F. Ma, L.T. Cai, Self-monitoring artificial red cells with sufficient oxygen supply for enhanced photodynamic therapy, Sci. Rep. 6 (2016) 23393. [49] Z.X. Zhu, Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability, Biomaterials 34 (38) (2013) 10238-10248. [50] A.J. Mahajan, D.J. Kirwan, Nucleation and growth kinetics of biochemicals measured at high supersaturations, J. Cryst. Growth 144 (3-4) (1994) 281-290. [51] S.M. D'Addio, R.K. Prud’homme, Controlling drug nanoparticle formation by rapid precipitation, Adv. Drug Deliv. Rev. 63 (6) (2011) 417-426. [52] Y. Li, Y. Pei, X. Zhang, Z. Gu, Z. Zhou, W. Yuan, J. Zhou, J. Zhu, X. Gao, PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats, J. Contr. Release 71 (2) (2001) 203-211. [53] G. Zambito, S. Deng, J. Haeck, N. Gaspar, U. Himmelreich, R. Censi, C. Lowik, P. Di Martino, L. Mezzanotte, Fluorinated PLGA-PEG-mannose nanoparticles for tumor-associated macrophage detection by optical imaging and MRI, Front. Med. 8 (2021) 712367. [54] M. Kowalska, M. Broniatowski, M. Mach, L. Plachta, P. Wydro, The effect of the polyethylene glycol chain length of a lipopolymer (DSPE-PEGn) on the properties of DPPC monolayers and bilayers, J. Mol. Liq. 335 (2021) 116529. [55] B. Muthuraj, S. Mukherjee, C.R. Patra, P.K. Iyer, Amplified fluorescence from polyfluorene nanoparticles with dual state emission and aggregation caused red shifted emission for live cell imaging and cancer theranostics, ACS Appl. Mater. Interfaces 8 (47) (2016) 32220-32229. [56] Y. Li, G.H. Liu, J.Y. Ma, J.Y. Lin, H.R. Lin, G.H. Su, D.Y. Chen, S.F. Ye, X.Y. Chen, X. Zhu, Z.Q. Hou, Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy, J. Contr. Release 258 (2017) 95-107. [57] R.R. Zhao, G.R. Zheng, L.L. Fan, Z.C. Shen, K. Jiang, Y. Guo, J.W. Shao, Carrier-free nanodrug by co-assembly of chemotherapeutic agent and photosensitizer for cancer imaging and chemo-photo combination therapy, Acta Biomater. 70 (2018) 197-210. [58] J.E. Chung, S. Tan, S.J. Gao, N. Yongvongsoontorn, S.H. Kim, J.H. Lee, H.S. Choi, H. Yano, L. Zhuo, M. Kurisawa, J.Y. Ying, Self-assembled micellar nano complexes comprising green tea catechin derivatives and protein drugs for cancer therapy, Nat. Nanotechnol. 9 (11) (2014) 907-912. [59] B.Q. Chen, R.K. Kankala, G.Y. He, D.Y. Yang, G.P. Li, P. Wang, S.B. Wang, Y.S. Zhang, A.Z. Chen, Supercritical fluid-assisted fabrication of indocyanine green-encapsulated silk fibroin nanoparticles for dual-triggered cancer therapy, ACS Biomater. Sci. Eng. 4 (10) (2018) 3487-3497. [60] X.J. Zhou, Q.C. Cai, S.C. Zhao, F.L. Ling, G.T. Xiang, L. Li, Y.J. Wang, Y.H. Li, X. Tang, CDs-ICG@BSA nanoparticles for excellent phototherapy and in situ bioimaging, Talanta 271 (2024) 125661. [61] M. Hiraoka, S. Jo, K. Akuta, Y. Nishimura, M. Takahashi, M. Abe, Radiofrequency capacitive hyperthermia for deep-seated tumors. I. Studies on thermometry, Cancer 60 (1) (1987) 121-127. [62] M.W. Dewhirst, B.L. Viglianti, M. Lora-Michiels, M. Hanson, P.J. Hoopes, Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia, Int. J. Hyperther. 19 (3) (2003) 267-294. |