[1] J.Q. Xu, J.X. Yu, J.L. Xu, C.L. Sun, W.Z. He, J.W. Huang, G.M. Li, High-value utilization of waste tires: a review with focus on modified carbon black from pyrolysis, Sci. Total Environ. 742 (2020) 140235. [2] W.W. Han, D.S. Han, H.B. Chen, Pyrolysis of waste tires: a review, Polymers 15 (7) (2023) 1604. [3] Y.T. Lin, G.L. Zhuang, M.Y. Wey, H.H. Tseng, The viable fabrication of gas separation membrane used by reclaimed rubber from waste tires, Polymers 12 (11) (2020) 2540. [4] D. Czarna-Juszkiewicz, P. Kunecki, J. Cader, M. Wdowin, Review in waste tire management-potential applications in mitigating environmental pollution, Materials 16 (17) (2023) 5771. [5] A. Kumar, H.S. Pali, M. Kumar, Possible utilisation of waste tyre as potential energy source: a short review, J. Biofuels 12 (1) (2021) 19-27. [6] Q. Wang, L. Jiang, Y.L. Wang, X.J. Qi, G.T. Wang, Discussion on tire retreading and reuse technology, IOP Conf. Ser.: Earth Environ. Sci. 512 (1) (2020) 012146. [7] J.R. Santiago, T. Sekito, Y. Dote, Leaching behavior and mineral speciation of cement-solidified boiler fly ash from industrial waste incineration containing waste tires, J. Mater. Cycles Waste Manag. 25 (2) (2023) 910-919. [8] J.Y. Fu, W.W. Ye, L.J. Ji, Y.G. Yin, X. Xu, Q.X. Huang, X.D. Li, W.T. Jiao, M.X. Zhan, Characteristics of the pyrolytic products and the pollutant emissions at different operating stages from a pilot waste tire pyrolysis furnace, Waste Manag. 174 (2024) 585-596. [9] T. Qi, N. Wang, J.G. Zhang, Study on the co-pyrolysis process of waste rubber and coal(in Chinese), Coal Process. Compr. Util 22(2018) 22-25. [10] A. Alsaleh, M.L. Sattler, Waste tire pyrolysis: influential parameters and product properties, Curr. Sustain. Energy Rep. 1 (4) (2014) 129-135. [11] R.K. Dong, M.Z. Zhao, W.W. Xia, X.Y. Yi, P.T. Dai, N.P. Tang, Chemical and microscopic investigation of co-pyrolysis of crumb tire rubber with waste cooking oil at mild temperature, Waste Manag. 79 (2018) 516-525. [12] M. Labaki, M. Jeguirim, Thermochemical conversion of waste tyres-a review, Environ. Sci. Pollut. Res. Int. 24 (11) (2017) 9962-9992. [13] A. Undri, S. Meini, L. Rosi, M. Frediani, P. Frediani, Microwave pyrolysis of polymeric materials: waste tires treatment and characterization of the value-added products, J. Anal. Appl. Pyrolysis 103 (2013) 149-158. [14] P.T. Williams, A.J. Brindle, Aromatic chemicals from the catalytic pyrolysis of scrap tyres, J. Anal. Appl. Pyrolysis 67 (1) (2003) 143-164. [15] X.L. Tian, S. Han, K.S. Wang, T.L. Shan, Z.Y. Li, S.M. Li, C.S. Wang, Waste resource utilization: Spent FCC catalyst-based composite catalyst for waste tire pyrolysis, Fuel 328 (2022) 125236. [16] Z.L. Song, Y.T. Hu, Y.K. Han, S.Y. Chen, X.Q. Zhao, J. Sun, Y.P. Mao, X.J. Wang, W.L. Wang, Effect of swelling pretreatment by coal tar on the microwave pyrolysis of waste tires, J. Environ. Chem. Eng. 11 (5) (2023) 110781. [17] J.Z. Wang, X.J. Dong, Z.L. Zuo, S.Y. Luo, Catalytic pyrolysis of waste bicycle tires and engine oil to produce limonene, Energies 16 (11) (2023) 4351. [18] M. Arabiourrutia, G. Lopez, M. Artetxe, J. Alvarez, J. Bilbao, M. Olazar, Waste tyre valorization by catalytic pyrolysis-A review, Renew. Sustain. Energy Rev. 129 (2020) 109932. [19] R. Miandad, M.A. Barakat, M. Rehan, A.S. Aburiazaiza, J. Gardy, A.S. Nizami, Effect of advanced catalysts on tire waste pyrolysis oil, Process. Saf. Environ. Prot. 116 (2018) 542-552. [20] K. Shuai, Y.Y. Yan, X.L. Cui, R.X. Han, S. Li, Research Advances in Pyrolysis Processes and Catalysts of Waste Tires(in Chinese), Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering 17 (2017) 193-200. [21] Z.Y. Yu, W. Guo, P.X. Yang, J. Zhang, K. Gao, J.X. Shang, B.L. Yang, Z.Q. Wu, In-situ infrared and kinetic characteristics analysis on pyrolysis of tar-rich coal and macerals, Fuel 348 (2023) 128601. [22] D. Zhou, Z.J. Luo, W.Q. Cai, W.W. Liang, H.H. Huang, Y.S. Cai, C.X. Dang, Kinetics, comprehensive characteristics, and product analysis of peanut shell pyrolysis activated by a small amount of KCl, J. Anal. Appl. Pyrolysis 174 (2023) 106148. [23] D. Czajczynska, K. Czajka, R. Krzyzynska, H. Jouhara, Waste tyre pyrolysis-Impact of the process and its products on the environment, Therm. Sci. Eng. Prog. 20 (2020) 100690. [24] M. Juma, Z. Korenova, J. Markos, L. Jelemensky, M. Bafrnec, Experimental study of pyrolysis and combustion of scrap tire, Polym. Adv. Technol. 18 (2) (2007) 144-148. [25] J. Han, W. Li, D.Y. Liu, L.B. Qin, W.S. Chen, F.T. Xing, Pyrolysis characteristic and mechanism of waste tyre: a thermogravimetry-mass spectrometry analysis, J. Anal. Appl. Pyrolysis 129 (2018) 1-5. [26] L. Zhou, Influence of tire powder’s pyrolysis by particle size/heating rate and catalyst and its thermogravimetric analysis, J. Southwest Univ. Sci. Technol., (2013). [27] S. Kordoghli, M. Paraschiv, R. Kuncser, M. Tazerout, F. Zagrouba, Catalysts' influence on thermochemical decomposition of waste tires, Environ. Prog. Sustain. Energy 36 (5) (2017) 1560-1567. [28] M. Chandran, P. Rajamamundi, A.C. Kit, Tire oil from waste tire scraps using novel catalysts of manufacturing sand (M Sand) and TiO2: Production and FTIR analysis, energy Sources Part A Recovery Util environ eff 39 (18) (2017) 1928-1934. [29] A.G. Abdul Jameel, A.B.S. Alquaity, K.O. Islam, A.A. Pasha, S. Khan, M.A. Nemitallah, U. Ahmed, Pyrolysis and oxidation of waste tire oil: analysis of evolved gases, ACS Omega 7 (25) (2022) 21574-21582. [30] A. Yasar, S. Rana, M. Moniruzzaman, M. Nazar, A.B. Tabinda, R. Haider, A. Ahmad, A. Mukhtar, M.A. Qyyum, S. Ullah, Quality and environmental impacts of oil production through pyrolysis of waste tyres, Environ. Technol. Innov. 23 (2021) 101565. [31] Z. Cepic, V. Mihajlovic, S. Duric, M. Milotic, M. Stosic, B. Stepanov, M. Ilic Micunovic, Experimental analysis of temperature influence on waste tire pyrolysis, Energies 14 (17) (2021) 5403. [32] X.M. Fu, Y.X. Zhang, H.B. Liu, J.W. Jia, Y.M. Jia, X.Q. Shu, Influences of initial temperature on pyrolysis of scrap tire, Chin. J. Environ. Eng. 7 (5) (2013) 1907-1912. [33] N. Al-Selwi, A study of temperature and residence time influence on waste tire pyrolysis products yield, Eng. Adv. 3 (1) (2023) 69-83. [34] A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov, A.S. Betev, S.P. Medvedev, S.V. Khomik, G.N. Mokhin, V.N. Mikhalkin, Kinetics of thermal conversion of gaseous products of polypropylene pyrolysis using several detailed kinetic mechanisms, J. Phys.: Conf. Ser. 2036 (1) (2021) 012005. [35] Q. Chen, F.F. Xu, P.J. Zong, F.H. Song, B. Wang, Y.Y. Tian, F.C. Wu, X.L. Zhao, Y.Y. Qiao, Influence of CaO on the thermal kinetics and formation mechanism of high value-added products during waste tire pyrolysis, J. Hazard. Mater. 436 (2022) 129220. [36] Y.H. Pan, J.X. Song, F.F. Lou, J. Xu, Y.G. Zhou, Q.X. Huang, Catalytic co-pyrolysis of rubber waste and polyacrylonitrile for producing BTEX enriched oil via heterogeneous Diels-Alder reaction, Fuel 321 (2022) 124028. [37] Y.F. Wu, K.C. Wang, B.Y. Wei, H. Yang, L.J. Jin, H.Q. Hu, Pyrolysis behavior of low-density polyethylene over HZSM-5 via rapid infrared heating, Sci. Total Environ. 806 (Pt 3) (2022) 151287. [38] Q. Zhang, I. Jones, M.M. Zhu, Z.Z. Zhang, J. Gao, D.K. Zhang, An experimental study of Ni-Mo adsorbent for reactive adsorption desulfurization of spent tire pyrolysis oil modelled using n-hexane and thiophene, Fuel 303 (2021) 121272. [39] J.G. Hwang, B.K. Lee, M.K. Choi, H.C. Park, H.S. Choi, Optimal production of waste tire pyrolysis oil and recovery of high value-added D-limonene in a conical spouted bed reactor, Energy 262 (2023) 125519. [40] Z.H. Liu, P. Li, C. Chang, X.H. Wang, J.D. Song, S.Q. Fang, S.S. Pang, Influence of metal chloride modified biochar on products characteristics from biomass catalytic pyrolysis, Energy 250 (2022) 123776. [41] J.L. Wu, G.Z. Chang, X. Li, J.S. Li, Q.J. Guo, Effects of NaOH on the catalytic pyrolysis of lignin/HZSM-5 to prepare aromatic hydrocarbons, J. Anal. Appl. Pyrolysis 146 (2020) 104775. [42] J. Zhang, Y. Huang, D.T. Sekyere, W. Wang, Y. Tian, Catalytic fast pyrolysis of waste pine sawdust over solid base, acid and base-acid tandem catalysts, Bioresour. Technol. 394 (2024) 130294. [43] Y.P. Wang, L.L. Dai, L.L. Fan, D.L. Duan, Y.H. Liu, R. Ruan, Z.T. Yu, Y.Z. Liu, L. Jiang, Microwave-assisted catalytic fast co-pyrolysis of bamboo sawdust and waste tire for bio-oil production, J. Anal. Appl. Pyrolysis 123 (2017) 224-228. |