[1] H. Yang, Z.J. Yang, Q.F. Yang, X.M. Wei, Y.Q. Yuan, L.L. Wang, Y.F. Hu, J.J. Ding, Simple and high-precision DFT-QSPR prediction of enthalpy of combustion for sesquiterpenoid high-energy-density fuels, Fuel 332 (2023) 126157. [2] J. Stihle, D. Uzio, C. Lorentz, N. Charon, J. Ponthus, C. Geantet, Detailed characterization of coal-derived liquids from direct coal liquefaction on supported catalysts, Fuel 95 (2012) 79-87. [3] H.S. Chung, C.S.H. Chen, R.A. Kremer, J.R. Boulton, G.W. Burdette, Recent developments in high-energy density liquid hydrocarbon fuels, Energy Fuels 13 (3) (1999) 641-649. [4] L.M. Balster, E. Corporan, M.J. DeWitt, J.T. Edwards, J.S. Ervin, J.L. Graham, S.Y. Lee, S. Pal, D.K. Phelps, L.R. Rudnick, R.J. Santoro, H.H. Schobert, L.M. Shafer, R.C. Striebich, Z.J. West, G.R. Wilson, R. Woodward, S. Zabarnick, Development of an advanced, thermally stable, coal-based jet fuel, Fuel Process. Technol. 89 (4) (2008) 364-378. [5] G.W. Burdette, H.R. Lander, J.R. McCoy, High-energy fuels for cruise missiles, J. Energy 2 (5) (1978) 289-292. [6] L.Y. Huang, S. Huang, Y.B. Mao, B. Wang, Q. Zhu, R.P. Jiang, An experimental study on the laminar burning velocities of RP-3 kerosene and its surrogate fuel at elevated pressures and temperatures, Fuel 331 (2023) 125844. [7] J. Yang, Z. Xin, Q. He, K. Corscadden, H.B. Niu, An overview on performance characteristics of bio-jet fuels, Fuel 237 (2019) 916-936. [8] J.J. Zou, X.W. Zhang, J. Kong, L. Wang, Hydrogenation of Dicyclopentadiene over amorphous nickel alloy catalyst SRNA-4, Fuel 87 (17-18) (2008) 3655-3659. [9] J. Zhang, Q. Wang, W.F. Shen, Hyper-parameter optimization of multiple machine learning algorithms for molecular property prediction using hyperopt library, Chin. J. Chem. Eng. 52 (2022) 115-125. [10] A.D. Casey, S.F. Son, I. Bilionis, B.C. Barnes, Prediction of energetic material properties from electronic structure using 3D convolutional neural networks, J. Chem. Inf. Model. 60 (10) (2020) 4457-4473. [11] C.M. Yang, J. Chen, R.W. Wang, M. Zhang, C.Y. Zhang, J. Liu, Density prediction models for energetic compounds merely using molecular topology, J. Chem. Inf. Model. 61 (6) (2021) 2582-2593. [12] R. Liu, Y.C. Tang, J. Tian, J. Huang, C.Y. Zhang, L.Y. Wang, J. Liu, QSPR models for sublimation enthalpy of energetic compounds, Chem. Eng. J. 474 (2023) 145725. [13] R.Z. Li, J.M. Herreros, A. Tsolakis, W.Z. Yang, Machine learning-quantitative structure property relationship (ML-QSPR) method for fuel physicochemical properties prediction of multiple fuel types, Fuel 304 (2021) 121437. [14] S.W. Xiong, L. Zhou, Y.Y. Dai, X. Ji, Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis, Chin. J. Chem. Eng. 56 (2023) 1-14. [15] F. Hou, Z.Y. Wu, Z. Hu, Z.R. Xiao, L. Wang, X.W. Zhang, G.Z. Li, Comparison study on the prediction of multiple molecular properties by various neural networks, J. Phys. Chem. A 122 (46) (2018) 9128-9134. [16] X.B. Zhang, A. Rajendran, X.B. Wang, W.Y. Li, Solubility study of hydrogen in direct coal liquefaction solvent based on quantitative structure-property relationships model, Chin. J. Chem. Eng. 64 (2023) 250-258. [17] M.S. Manna, C.K. Das, S. Ghanta, Design of C-H-N-O based new hetero-cyclic high energy density molecules: a theoretical survey, Struct. Chem. 32 (3) (2021) 1095-1104. [18] J.P. Liu, L.L. Liu, X.B. Liu, Development of high-energy-density materials, Sci. China Technol. Sci. 63 (2) (2020) 195-213. [19] J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk, C. Amador-Bedolla, R.S. Sanchez-Carrera, A. Gold-Parker, L. Vogt, A.M. Brockway, A. Aspuru-Guzik, The Harvard clean energy project: large-scale computational screening and design of organic photovoltaics on the world community grid, J. Phys. Chem. Lett. 2 (17) (2011) 2241-2251. [20] Y. Kwon, S. Kang, Y.S. Choi, I. Kim, Evolutionary design of molecules based on deep learning and a genetic algorithm, Sci. Rep. 11 (1) (2021) 17304. [21] L.Y. Wen, S.Q. Shan, W.P. Lai, J.W. Shi, M.T. Li, Y.Z. Liu, M.C. Liu, Z.H. Zhou, Accelerating the design of high-energy-density hydrocarbon fuels by learning from the data, Molecules 28 (21) (2023) 7361. [22] S. Kim, J. Chen, T.J. Cheng, A. Gindulyte, J. He, S.Q. He, Q.L. Li, B.A. Shoemaker, P.A. Thiessen, B. Yu, L. Zaslavsky, J. Zhang, E.E. Bolton, PubChem 2019 update: improved access to chemical data, Nucleic Acids Res. 47 (D1) (2019) D1102-D1109. [23] J.J. Irwin, T. Sterling, M.M. Mysinger, E.S. Bolstad, R.G. Coleman, ZINC: a free tool to discover chemistry for biology, J. Chem. Inf. Model. 52 (7) (2012) 1757-1768. [24] T. Miyao, H. Kaneko, K. Funatsu, Inverse QSPR/QSAR analysis for chemical structure generation (from y to x), J. Chem. Inf. Model. 56 (2) (2016) 286-299. [25] T. Miyao, M. Arakawa, K. Funatsu, Exhaustive structure generation for inverse-QSPR/QSAR, Mol. Inform. 29 (1-2) (2010) 111-125. [26] L.Y. Wen, Y.L. Wang, Y.Z. Liu, Data-driven combinatorial design of highly energetic materials, Acc. Mater. Res. 6 (1) (2025) 64-76. [27] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436-444. [28] M. Mukaidaisi, A. Vu, K. Grantham, A. Tchagang, Y.F. Li, Multi-objective drug design based on graph-fragment molecular representation and deep evolutionary learning, Front. Pharmacol. 13 (2022) 920747. [29] R. Gomez-Bombarelli, J.N. Wei, D. Duvenaud, J.M. Hernandez-Lobato, B. Sanchez-Lengeling, D. Sheberla, J. Aguilera-Iparraguirre, T.D. Hirzel, R.P. Adams, A. Aspuru-Guzik, Automatic chemical design using a data-driven continuous representation of molecules, ACS Cent. Sci. 4 (2) (2018) 268-276. [30] P. Bongini, M. Bianchini, F. Scarselli, Molecular generative graph neural networks for drug discovery, Neurocomputing 450 (2021) 242-252. [31] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 16, Revision C.01, Gaussian, Inc., Walling ford CT, 2019. [32] J. Marrero, R. Gani, Group-contribution based estimation of pure component properties, Fluid Phase Equilib. 183 (2001) 183-208. [33] S. Wang, Z.H. Cui, C.Y. Yu, T.W. Tan, Computational assessment of the molecular structure and properties for high energy density fuel, J. Phys. Chem. A 124 (33) (2020) 6660-6666. [34] T. Lu, F.W. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem. 33 (5) (2012) 580-592. [35] Y.X. Wei, L.Y. Shan, T. Qiu, D.N. Lu, Z. Liu, Machine learning-assisted retrosynthesis planning: current status and future prospects, Chin. J. Chem. Eng. 77 (2025) 273-292. [36] G Landrum, RDKit: Open-source cheminformatics, Software, 2016, https://www.rdkit.org. [37] J.K. Matt, P. Brooks, J.M. Hernández-Lobato, Grammar variational autoencoder, Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 2017. [38] M. Simonovsky, N. Komodakis, GraphVAE: towards generation of small graphs using variational autoencoders. Artificial Neural Networks and Machine Learning - ICANN 2018. Springer International Publishing, (2018), pp 12-422. [39] J.D. Woodroffe, D.V. Lupton, M.D. Garrison, E.M. Nagel, M.J. Siirila, B.G. Harvey, Synthesis and fuel properties of high-energy density cyclopropanated monoterpenes, Fuel Process. Technol. 222 (2021) 106952. [40] S.M. Cho, J.C. Kim, J. Kim, Y.M. Cho, H.W. Kwak, B. Koo, I.G. Choi, Alkyl bicyclo [2.2.2] octanes as high-energy-density bio-aviation fuel, Fuel Process. Technol. 254 (2024) 108047. [41] G.Z. Li, Z. Hu, F. Hou, X.Y. Li, L. Wang, X.W. Zhang, Machine learning enabled high-throughput screening of hydrocarbon molecules for the design of next generation fuels, Fuel 265 (2020) 116968. |