1 Cluis, C.P., Burja, A.M., Martin, V.J.J., “Current prospects for the production of coenzyme Q10 in microbes”, Trends Biotechnol., 25, 514-521 (2007). 2 Jeya, M., Moon, H.J., Lee, J.L., Kim, I.W., Lee, J.K., “Current state of coenzyme Q10 production and its applications”, Appl. Microbiol. Biotechnol., 85, 1653-1663 (2010). 3 Meganathan, R., “Ubiquinone biosynthesis in microorganisms”, FEMS Microbiol. Lett., 203, 131-139 (2001). 4 Okada, K., Suzuki, K., Kamiya, Y., Zhu, X., Fujisaki, S., Nishimura, Y., Nishino, T., Nakagawad, T., Kawamukai, M., Matsuda, H., “Polyprenyl diphosphate synthase essentially defines the length of the side chain of ubiquinone”, Biochim. Biophys. Acta, 1302, 217-223 (1996). 5 Okada, K., Kamiya, Y., Zhu, X., Suzuki, K., Tanaka, K., Nakagawa, T., Matsuda, H., Kawamukai, M., “Cloning of the sdsA gene encoding solanesyl diphosphate synthase from Rhodobacter capsulatus and its functional expression in Escherichia coli and Saccharomyces cerevisiae”, J. Bacteriol., 179, 5992-5998 (1997). 6 Takahashi, S., Ogiyama, Y., Kusano, H., Shimada, H., Kawamukai, M., Kadowaki, K., “Metabolic engineering of coenzyme Q by modification of isoprenoid side chain in plant”, FEBS Lett., 580, 955-959 (2006). 7 Barkovich, R., Liao, J.C., “Metabolic engineering of isoprenoids”, Metab. Eng., 3, 27-39 (2001). 8 Lee, J.K., Her, G., Kim, S.Y., Seo, J.H., “Cloning and functional expression of the dps gene encoding decaprenyl diphosphate synthase from Agrobacterium tumefaciens”, Biotechnol. Prog., 20, 51-56 (2004). 9 Okada, K., Kainou, T., Tanaka, K., Nakagawa, T., Matsuda, H., Kawamukai, M., “Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate synthase from Gluconobacter suboxydans”, Eur. J. Biochem., 255, 52-59 (1998). 10 Frei, B., Kim, M.C., Ames, B.N., “Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations”, Proc. Natl. Acad. Sci. USA, 87, 4879-4883 (1990). 11 Kawamukai, M., “Biosynthesis, bioproduction and novel roles of ubiquinone”, J. Biosci. Bioeng., 94, 511-517 (2002). 12 Langsjoen, P.H., Langsjoen, A.M., “Coenzyme Q10 in cardiovascular disease with emphasis on heart failure and myocardial ischaemia”, Asia Pacific Heart J., 7, 160-168 (1998). 13 Negishi, E., Liou, S.Y., Xu, C.D., Huo, S.Q., “A novel, highly selective, and general methodology for the synthesis of 1,5-diene-containing oligoisoprenoids of all possible geometrical combinations exemplified by an iterative and convergent synthesis of coenzyme Q10 ”, Org. Lett., 4, 261-264 (2002). 14 Lipshutz, B.H., Mollard, P., Pfeiffer, S.S., Chrisman, W., “A short, highly efficient synthesis of coenzyme Q10 ”, J. Am. Chem. Soc., 124, 14282-14823 (2002). 15 Park, Y.C., Kim, S.J., Choi, J.H., Lee, W.H., Park, K.M., Kawamukai, M., Ryu, Y.W., Seo, J.H., “Batch and fed-batch production of coenzyme Q10 in recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Gluconobacter suboxydans”, Appl. Microbiol. Biotechnol., 67, 192-196 (2005). 16 Yoshida, H., Kotani, Y., Ochiai, K., Araki, K., “Production of ubiquinone-10 using bacteria”, J. Gen. Appl. Microbiol., 44, 19-26 (1998). 17 Ha, S.J., Kim, S.Y., Seo, J.H., Jeya, M., Zhang, Y.W., Ramu, T., Kim, I.W., Lee, J.K., “Ca2+ increases the specific coenzyme Q10 content in Agrobacterium tumefaciens”, Bioprocess Biosyst. Eng., 32, 697-700 (2010). 18 Sakato, K., Tanaka, H., Shibata, S., Kuratsu, Y., “Agitation-aeration studies on coenzyme Q10 production using Rhodopseudomonas spheroids”, Biotechnol. Appl. Biochem., 16, 19-22 (1992). 19 Jiang, S.Y., Yu, L.J., Shen, X.L., Xiong, X., Jian, Y., “Effects of aromatic amino acids on the biosynthesis of CoQ10 in Rhodopseudomonas palustris”, Pharmaceut. Biotechnol., 15 (5), 380-387 (2008). 20 Zahiri, H.S., Yoon, S.H., Keasling, J.D., Lee, S.H., Kim, S.W., Yoon, S.C., Shin, Y.C., “Coenzyme Q10 production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway”, Metab. Eng., 8, 406-416 (2006). 21 Takahashi, S., Nishino, T., Koyam, T., “Isolation and expression of Paracoccus denitrificans decaprenyl diphosphate synthase gene for production of ubiquinone-10 in Escherichia coli”, Biochem. Eng. J., 16,183-190 (2003). 22 Zahiri, H.S., Noghabi, K.A., Shin, Y.C., “Biochemical characterization of the decaprenyl diphosphate synthase of Rhodobacter sphaeroides for coenzyme Q10 production”, Appl. Microbiol. Biotechnol., 73, 796-806 (2006). 23 Harker, M., Bramley, P.M., “Expression of prokaryotic 1-deoxy-Dxyluose-5-phosphatase in Escherichia coli increases carotenoid and ubiquinone biosynthesis”, FEBS Lett., 87, 115-119 (1999). 24 Kim, S.J., Kim, M.D., Choi, J.H., Kim, S.Y., Ryu, Y.W., Seo, J.H., “Amplification of 1-deoxy-D-xyluose 5-phosphate (DXP) synthase level increases coenzyme Q10 production in recombinant Escherichia coli”, Appl. Microbiol. Biotechnol., 72, 982-985 (2006). 25 Choi, J.H., Ryu, Y.W., Park, Y.C., Seo, J.H., “Synergistic effects of chromosomal ispB deletion and dxs overexpression on coenzyme Q10 production in recombinant Escherichia coli expressing Agrobacterium tumefaciens dps gene”, J. Biotechnol., 144, 64-69 (2009). 26 Kwon, O., Druce-Hoffman, M., Meganathan, R., “Regulation of the ubiquinone (coenzyme Q) biosynthetic genes ubiCA in Escherichia coli”, Curr. Microbiol., 50, 180-189 (2005). 27 Zhang, D., Li, Z., Wang, F., Shrestha, B., Tian, P., Tan, T., “Expression of various genes to enhance ubiquinone metabolic pathway in Agrobacterium tumefaciens”, Enzyme Microb. Technol., 41, 772-779 (2007). 28 Zhu, X., Yuasa, M., Okada, K., Suzuki, K., Nakagawa, T., Kawamukai, M., Matsuda, H., “Production of ubiquinone in Escherichia coli by expression of various genes responsible for ubiquinone biosynthesis”, J. Ferment. Bioeng., 79, 493-495 (1995). 29 Ye, J., Ma, L., Wu, H., Liu, X., Zhang, H., “Effect of overexpressing ubiCA genes responsible for ubiquinone biosynthesis on ubiquinone production in Escherichia coli”, J. East China Univ. Sci. Technol. (Natural Science Edition), 32, 269-273 (2006). 30 Farmer, W.R., Liao, J.C., “Precursor balancing for metabolic engineering of lycopene production in Escherichia coli”, Biotechnol. Prog., 17, 57-61 (2001). 31 Martínez, A., Zhu, J., Lin, H., Bennett, G.N., San, K.Y., “Replacing Escherichia coli NAD-dependent glyceraldehydes 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways”, Metab. Eng., 10, 352-359 (2008). 32 Jones, K.L., Kim, S.W., Keasling, J.D., “Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria”, Metab. Eng., 2, 328-338 (2000). 33 Guzman, L.M., Belin, D., Carson, M.J., Beckwith, J., “Tight regulation, modulation, and high-level expression by vectors containing the arabinose P BAD promoter”, J. Bacteriol., 177, 4121-4130 (1995). 34 Datsenko, K.A., Wanner, B.L., “One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products”, Proc. Natl. Acad. Sci. USA, 97, 6640-6645 (2000). 35 Kedar, P., Colah, R., Shimizu, K., “Proteomic investigation on the pyk-F gene knockout Escherichia coli for aromatic amino acid production”, Enzyme Microb. Technol., 41, 455-465 (2007). 36 Lee, J.K., Oh, D.K., Kim, S.Y., “Cloning and characterization of the dxs gene, encoding 1-deoxy-d-xylulose 5-phosphate synthase from Agrobacterium tumefaciens, and its overexpression in Agrobacterium tumefaciens”, J. Biotechnol., 128, 555-566 (2007). 37 Lee, P.C., Mijts, B.N., Schmidt-Dannert, C., “Investigation of factors influencing production of the monocyclic carotenoid torulene in metabolically engineered Escherichia coli”, Appl. Microbiol. Biotechnol., 65, 538-546 (2004). 38 Tatarko, M., Romeo, T., “Disruption of global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli”, Curr. Microbiol., 43, 26-32 (2001). 39 Yakandawala, N., Romeo, T., Friesen, A.D., Madhyastha, S., “Metabolic engineering of Escherichia coli to enhance phenylalanine production”, Appl. Microbiol. Biotechnol., 78, 283-291 (2008). 40 Weilbacher, T., Suzuki, K., Dubey, A.K., Wang, X., Gudapaty, S., Morozov, I., Baker, C.S., Georgellis, D., Babitzke, P., Romeo, T., “A novel sRNA component of the carbon storage regulatory system of Escherichia coli”, Mol. Microbiol., 48, 657-670 (2003). 41 Kim, S.W., Keasling, J.D., “Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production”, Biotechnol. Bioeng., 72, 408-415 (2001). 42 O'Connor, M., Peifer, M., Bender, W., “Construction of large DNA segments in Escherichia coli”, Science, 244, 1307-1312 (1989). 43 Noack, D., Roth, M., Geuther, R., Muller, G., Undisz, K., Hoffmeier, C., Gaspar, S., “Maintenance and genetic stability of vector plasmids pBR322 and pBR325 in Escherichia coli K12 strains grown in a chemostat”, Mol. Gen. Genet., 184, 121-124 (1981). 44 Birnbaum, S., Bailey, J.E., “Plasmid presence changes the relative levels of many host cell proteins and ribosome components in recombinant Escherichia coli”, Biotechnol. Bioeng., 37, 736-745 (1991). 45 Vind, J., Sorensen, M.A., Rasmussen, M.D., Pedersen, S., “Synthesis of proteins in Escherichia coli is limited by the concentration of free ribosomes”, J. Mol. Biol., 231, 678-688 (1993). 46 Shiloach, J., Fass, R., “Growing E. coli to high cell density-A historical perspective on method development”, Biotechnol. Adv., 23, 345-357 (2005). |