Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (10): 2581-2586.doi: 10.1016/j.cjche.2018.11.017
• Materials and Product Engineering • Previous Articles Next Articles
Yawei Shi1,2, Wei Zheng2, Hao Liu2, Liang Wang1,2, Hongwei Zhang1,2
Received:
2018-09-25
Revised:
2018-11-01
Online:
2019-10-28
Published:
2020-01-17
Contact:
Liang Wang
E-mail:mashi7822@163.com
Supported by:
Yawei Shi, Wei Zheng, Hao Liu, Liang Wang, Hongwei Zhang. Protein-derived nitrogen and sulfur co-doped carbon for efficient adsorptive removal of heavy metals[J]. Chinese Journal of Chemical Engineering, 2019, 27(10): 2581-2586.
[1] T. Wen, J. Wang, S. Yu, Z. Chen, T. Hayat, X. Wang, Magnetic porous carbonaceous material produced from tea waste for efficient removal of As(V), Cr(VI), humic acid, and dyes, ACS Sustain. Chem. Eng. 5(5) (2017) 4371-4380. [2] W. Yantasee, Y. Lin, G.E. Fryxell, K.L. Alford, B.J. Busche, C.D. Johnson, Selective removal of copper(II) from aqueous solutions using fine-grained activated carbon functionalized with amine, Ind. Eng. Chem. Res. 43(11) (2004) 2759-2764. [3] J. Tang, B. Mu, M. Zheng, A. Wang, One-step calcination of the spent bleaching earth for the efficient removal of heavy metal ions, ACS Sustain. Chem. Eng. 3(6) (2015) 1125-1135. [4] J. Xu, Z. Cao, Y. Zhang, Z. Yuan, Z. Lou, X. Xu, X. Wang, A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water:Preparation, application, and mechanism, Chemosphere 195(2018) 351-364. [5] K. Sunil, G. Karunakaran, S. Yadav, M. Padaki, V. Zadorozhnyy, R.K. Pai, Al-Ti2O6 a mixed metal oxide based composite membrane:A unique membrane for removal of heavy metals, Chem. Eng. J. 348(2018) 678-684. [6] B. Lam, S. Déon, N. Morin-Crini, G. Crini, P. Fievet, Polymer-enhanced ultrafiltration for heavy metal removal:Influence of chitosan and carboxymethyl cellulose on filtration performances, J. Clean. Prod. 171(2018) 927-933. [7] Z. Wang, A. Sim, J.J. Urban, B. Mi, Removal and recovery of heavy metal ions by twodimensional MoS2 nanosheets:Performance and mechanisms, Environ. Sci. Technol. 52(17) (2018) 9741-9748. [8] Z. Chen, Y. Liang, D. Jia, W. Chen, Z. Cui, X. Wang, Layered silicate RUB-15 for efficient removal of UO22+ and heavy metal ions by ion-exchange, Environ. Sci. Nano 4(9) (2017) 1851-1858. [9] A. Ma, A. Abushaikha, S.J. Allen, G. McKay, Ion exchange homogeneous surface diffusion modelling by binary site resin for the removal of nickel ions from wastewater in fixed beds, Chem. Eng. J. 358(2019) 1-10. [10] Y. Ge, Z. Li, Application of lignin and its derivatives in adsorption of heavy metal ions in water:A review, ACS Sustain. Chem. Eng. 6(5) (2018) 7181-7192. [11] V.K. Gupta, S. Agarwal, A.K. Bharti, H. Sadegh, Adsorption mechanism of functionalized multi-walled carbon nanotubes for advanced Cu (II) removal, J. Mol. Liq. 230(2017) 667-673. [12] H. Wang, X. Yuan, Y. Wu, H. Huang, G. Zeng, Y. Liu, X. Wang, N. Lin, Y. Qi, Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution, Appl. Surf. Sci. 279(2013) 432-440. [13] S. Chen, J. Wang, Z. Wu, Q. Deng, W. Tu, G. Dai, Z. Zeng, S. Deng, Enhanced Cr(VI) removal by polyethylenimine- and phosphorus-codoped hierarchical porous carbons, J. Colloid Interface Sci. 523(2018) 110-120. [14] M. Naushad, T. Ahamad, B.M. Al-Maswari, A. Abdullah Alqadami, S.M. Alshehri, Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium, Chem. Eng. J. 330(2017) 1351-1360. [15] C.M. Babu, K. Binnemans, J. Roosen, Ethylenediaminetriacetic acid-functionalized activated carbon for the adsorption of rare earths from aqueous solutions, Ind. Eng. Chem. Res. 57(5) (2018) 1487-1497. [16] Y.F. Jia, B. Xiao, K.M. Thomas, Adsorption of metal ions on nitrogen surface functional groups in activated carbons, Langmuir 18(2) (2002) 470-478. [17] W. Shen, W. Fan, Nitrogen-containing porous carbons:Synthesis and application, J. Mater. Chem. A 1(4) (2013) 999-1013. [18] P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun, D. Cao, ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction, Energy Environ. Sci. 7(1) (2014) 442-450. [19] B. Xu, H. Duan, M. Chu, G. Cao, Y. Yang, Facile synthesis of nitrogen-doped porous carbon for supercapacitors, J. Mater. Chem. A 1(14) (2013) 4565-4570. [20] B. Wang, Y. Wang, Y. Peng, X. Wang, N. Wang, J. Wang, J. Zhao, Nitrogen-doped biomass-based hierarchical porous carbon with large mesoporous volume for application in energy storage, Chem. Eng. J. 348(2018) 850-859. [21] M. Kobya, E. Demirbas, E. Senturk, M. Ince, Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone, Bioresour. Technol. 96(13) (2005) 1518-1521. [22] T. Bohli, A. Ouederni, Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase, Environ. Sci. Pollut. Res. Int. 23(16) (2016) 15852-15861. [23] D. Mohan, A. Sarswat, Y.S. Ok, C.U. Pittman, Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-A critical review, Bioresour. Technol. 160(2014) 191-202. [24] L. Han, K.S. Ro, K. Sun, H. Sun, Z. Wang, J.A. Libra, B. Xing, New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants, Environ. Sci. Technol. 50(24) (2016) 13274-13282. [25] C.O. Tuck, E. Perez, I.T. Horvath, R.A. Sheldon, M. Poliakoff, Valorization of biomass:Deriving more value from waste, Science 337(6095) (2012) 695-699. [26] Z. Li, Z. Xu, X. Tan, H. Wang, C.M.B. Holt, T. Stephenson, B.C. Olsen, D. Mitlin, Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors, Energy Environ. Sci. 6(3) (2013) 871. [27] H. Ma, C. Li, M. Zhang, J.-D. Hong, G. Shi, Graphene oxide induced hydrothermal carbonization of egg proteins for high-performance supercapacitors, J. Mater. Chem. A 5(32) (2017) 17040-17047. [28] Y. Chen, S. Ji, H. Wang, V. Linkov, R. Wang, Synthesis of porous nitrogen and sulfur co-doped carbon beehive in a high-melting-point molten salt medium for improved catalytic activity toward oxygen reduction reaction, Int. J. Hydrog. Energy 43(10) (2018) 5124-5132. [29] H. Nishihara, H. Fujimoto, H. Itoi, K. Nomura, H. Tanaka, M.T. Miyahara, P.A. Bonnaud, R. Miura, A. Suzuki, N. Miyamoto, Graphene-based ordered framework with a diverse range of carbon polygons formed in zeolite nanochannels, Carbon 129(2018) 854-862. [30] Y. Mine, Recent advances in the understanding of egg white protein functionality, Trends Food Sci. Technol. 6(7) (1995) 225-232. [31] H. Ding, J.S. Wei, H.M. Xiong, Nitrogen and sulfur co-doped carbon dots with strong blue luminescence, Nanoscale 6(22) (2014) 13817-13823. [32] C. Sun, D. Xu, D. Xue, Direct in situ ATR-IR spectroscopy of structural dynamics of NH4H2PO4 in aqueous solution, CrystEngComm 15(38) (2013) 7783-7791. [33] D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors, Adv. Funct. Mater. 19(3) (2009) 438-447. [34] A. Sánchez-Sánchez, F. Suárez-García, A. Martínez-Alonso, J. Tascón, Surface modification of nanocast ordered mesoporous carbons through a wet oxidation method, Carbon 62(2013) 193-203. [35] B. Xu, D. Zheng, M. Jia, G. Cao, Y. Yang, Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors, Electrochim. Acta 98(2013) 176-182. [36] W. Gao, X. Feng, T. Zhang, H. Huang, J. Li, W. Song, One-step pyrolytic synthesis of nitrogen and sulfur dual-doped porous carbon with high catalytic activity and good accessibility to small biomolecules, ACS Appl. Mater. Interfaces 6(21) (2014) 19109-19117. [37] C.B. Vidal, M. Seredych, E. Rodriguez-Castellon, R.F. Nascimento, T.J. Bandosz, Effect of nanoporous carbon surface chemistry on the removal of endocrine disruptors from water phase, J. Colloid Interface Sci. 449(2015) 180-191. [38] Z. Huang, P. Wu, B. Gong, Y. Dai, P.-C. Chiang, X. Lai, G. Yu, Efficient removal of Co2+ from aqueous solution by 3-aminopropyltriethoxysilane functionalized montmorillonite with enhanced adsorption capacity, PLoS One 11(7) (2016), e0159802. [39] G. Wang, J. Liu, X. Wang, Z. Xie, N. Deng, Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan, J. Hazard. Mater. 168(2-3) (2009) 1053-1058. [40] G. Abdi, A. Alizadeh, S. Zinadini, G. Moradi, Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid, J. Membr. Sci. 552(2018) 326-335. [41] M. Tan, X. Liu, W. Li, H. Li, Enhancing sorption capacities for copper (II) and lead (II) under weakly acidic conditions by L-tryptophan-functionalized graphene oxide, J. Chem. Eng. Data 60(5) (2015) 1469-1475. [42] N.F. Nejad, E. Shams, M. Amini, J. Bennett, Ordered mesoporous carbon CMK-5 as a potential sorbent forfuel desulfurization:Application to theremoval of dibenzothiophene and comparison with CMK-3, Microporous Mesoporous Mater. 168(2013) 239-246. [43] W. Wang, Chromium (VI) removal from aqueous solutions through powdered activated carbon countercurrent two-stage adsorption, Chemosphere 190(2018) 97-102. [44] X. Luo, J. Yuan, Y. Liu, C. Liu, X. Zhu, X. Dai, Z. Ma, F. Wang, Improved solid-phase synthesis of phosphorylated cellulose microsphere adsorbents for highly effective Pb2+ removal from water:Batch and fixed-bed column performance and adsorption mechanism, ACS Sustain. Chem. Eng. 5(6) (2017) 5108-5117. [45] E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci. 280(2) (2004) 309-314. [46] M.A. Tofighy, T. Mohammadi, Adsorption of divalent heavy metal ions from water using carbon nanotube sheets, J. Hazard. Mater. 185(1) (2011) 140-147. [47] G. Zhao, J. Li, X. Ren, C. Chen, X. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management, Environ. Sci. Technol. 45(24) (2011) 10454-10462. [48] P. Thilagavathy, T. Santhi, Kinetics, isotherms and equilibrium study of Co(II) adsorption from single and binary aqueous solutions by acacia nilotica leaf carbon, Chin. J. Chem. Eng. 22(11-12) (2014) 1193-1198. [49] F. Fang, L. Kong, J. Huang, S. Wu, K. Zhang, X. Wang, B. Sun, Z. Jin, J. Wang, X.J. Huang, J. Liu, Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite, J. Hazard. Mater. 270(2014) 1-10. [50] J.M. Gómez, E. Díez, I. Bernabé, P. Sáez, A. Rodríguez, Effective adsorptive removal of cobalt using mesoporous carbons synthesized by silica gel replica method, Environ. Process. 5(2) (2018) 225-242. |
[1] | Ling Meng, Xia Gui, Zhi Yun. Static and dynamic studies of adsorption by four macroporous resins to enrich oridonin from Rabdosia rubescens [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 151-158. |
[2] | Zoya Zaheer, Ekram Yousif Danish, Samia A. Kosa. 2-Hydroxy-1, 4-napthoquinone solubilization, thermodynamics and adsorption kinetics with surfactant [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 212-223. |
[3] | Ali H. Jawad, Ahmed Saud Abdulhameed, Lee D. Wilson, Syed Shatir A. Syed-Hassan, Zeid A. ALOthman, Mohammad Rizwan Khan. High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 281-290. |
[4] | Mohammad Saood Manzar, Shamsuddeen A. Haladu, Mukarram Zubair, Nuhu Dalhat Mu'azu, Aleem Qureshi, Nawaf I. Blaisi, Thomas F. Garrison, Othman Charles S. Al Hamouz. Synthesis and characterization of a series of cross-linked polyamines for removal of Erichrome Black T from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 341-352. |
[5] | Trung Thanh Nguyen, Vu Anh Khoa Tran, Le Ba Tran, Phuoc Toan Phan, Minh Tan Nguyen, Long Giang Bach, Surapol Padungthon, Cong Khiem Ta, Nhat Huy Nguyen. Synthesis of cation exchange resin-supported iron and magnesium oxides/hydroxides composite for nitrate removal in water [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 378-384. |
[6] | Suransh Jain, Arvind Kumar Mungray. Comparative study of different hydro-dynamic flow in microbial fuel cell stacks [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 423-430. |
[7] | Abdul Samad, Muhammad Imran Din, Mahmood Ahmed, Saghir Ahmad. Synthesis of zinc oxide nanoparticles reinforced clay and their applications for removal of Pb (II) ions from aqueous media [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 454-461. |
[8] | Shanshan Wang, Liangliang Huang, Yumeng Zhang, Licheng Li, Xiaohua Lu. A mini-review on the modeling of volatile organic compound adsorption in activated carbons: Equilibrium, dynamics, and heat effects [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 153-163. |
[9] | Yanfeng Liu, Xiaomin Dong, Bin Wang, Rongzhen Tian, Jianghua Li, Long Liu, Guocheng Du, Jian Chen. Food synthetic biology-driven protein supply transition: From animal-derived production to microbial fermentation [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 29-36. |
[10] | Xinxiao Sun, Xianglai Li, Xiaolin Shen, Jia Wang, Qipeng Yuan. Recent advances in microbial production of phenolic compounds [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 54-61. |
[11] | Huiling Wei, Mengyue Wu, Aili Fan, Haijia Su. Recombinant protein production in the filamentous fungus Trichoderma [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 74-81. |
[12] | Qinghong Shi, Yan Sun. Protein A-based ligands for affinity chromatography of antibodies [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 194-203. |
[13] | Xiaoyan Zhuang, Qian Wu, Aihui Zhang, Langxing Liao, Baishan Fang. Single-molecule biotechnology for protein researches [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 212-224. |
[14] | Yanxian Zhang, Yijing Tang, Dong Zhang, Yonglan Liu, Jian He, Yung Chang, Jie Zheng. Amyloid cross-seeding between Aβ and hIAPP in relation to the pathogenesis of Alzheimer and type 2 diabetes [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 225-235. |
[15] | Xiujuan Li, Le Chen, Dandan Zhu, Song Yang, Zhong Wu, Mingyang He, Zhihui Zhang, Qun Chen. Preparation of hybridizing zeolitic imidazolate frameworks with carboxymethylcellulose for adsorption separation of n-hexane/3-methylpentane [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 103-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||