[1] T.Q. Liao, H.T. Qu, T. Zhang, Y.G. Luo, L.B. Zhang, J. Li, Y.H. Xi, K.H. Cui, Removal of high-concentration of arsenic in acidic wastewater through zero-valent aluminium powder and characterisation of products, Hydrometallurgy 206 (2021) 105767. [2] S. Alka, S. Shahir, N. Ibrahim, M.J. Ndejiko, D.V N. Vo, F.A. Manan, Arsenic removal technologies and future trends: A mini review, J. Clean. Prod. 278 (2021) 123805. [3] G. Bulut, Ü. Yenial, E. Emiroğlu, A. Ali Sirkeci, Arsenic removal from aqueous solution using pyrite, J. Clean. Prod. 84 (2014) 526-532. [4] V. Masindi, W.M. Gitari, Removal of arsenic from wastewaters by cryptocrystalline magnesite: Complimenting experimental results with modelling, J. Clean. Prod. 113 (2016) 318-324. [5] L. Weerasundara, Y.S. Ok, J. Bundschuh, Selective removal of arsenic in water: A critical review, Environ. Pollut. 268 (Pt B) (2021) 115668. [6] C. Zhang, X.B. Min, J.Q. Zhang, M. Wang, Y.C. Li, J.C. Fei, Reductive clean leaching process of cadmium from hydrometallurgical zinc neutral leaching residue using sulfur dioxide, J. Clean. Prod. 113 (2016) 910-918. [7] A. Bortun, M. Bortun, J. Pardini, S.A. Khainakov, J.R. García, Synthesis and characterization of a mesoporous hydrous zirconium oxide used for arsenic removal from drinking water, Mater. Res. Bull. 45 (2) (2010) 142-148. [8] R.P. Liu, J.H. Qu, Review on heterogeneous oxidation and adsorption for arsenic removal from drinking water, J. Environ. Sci. (China) 110 (2021) 178-188. [9] S.I. Siddiqui, S. Ali Chaudhry, A review on graphene oxide and its composites preparation and their use for the removal of As(III) and As(V) from water under the effect of various parameters: Application of isotherm, kinetic and thermodynamics, Process. Saf. Environ. Prot. 119 (2018) 138-163. [10] S.I. Siddiqui, P.N. Singh, N. Tara, S. Pal, S. Ali Chaudhry, I. Sinha, Arsenic removal from water by starch functionalized maghemite nano-adsorbents: Thermodynamics and kinetics investigations, Colloid Interface Sci. Commun. 36 (2020) 100263. [11] J. Sánchez, B. Butter, S. Chavez, L. Riffo, L. Basáez, B.L. Rivas, Quaternized hydroxyethyl cellulose ethoxylate and membrane separation techniques for arsenic removal, Desalin. Water Treat. 57 (52) (2016) 25161-25169. [12] E. Çermikli, F. Şen, E. Altıok, J. Wolska, P. Cyganowski, N. Kabay, M. Bryjak, M. Arda, M. Yüksel, Performances of novel chelating ion exchange resins for boron and arsenic removal from saline geothermal water using adsorption-membrane filtration hybrid process, Desalination 491 (2020) 114504. [13] R.P. Liu, Z.C. Yang, Z.L. He, L.Y. Wu, C.Z. Hu, W.Z. Wu, J.H. Qu, Treatment of strongly acidic wastewater with high arsenic concentrations by ferrous sulfide (FeS): Inhibitive effects of S(0)-enriched surfaces, Chem. Eng. J. 304 (2016) 986-992. [14] L.H. Kong, X.J. Peng, X.Y. Hu, Mechanisms of UV-light promoted removal of As(V) by sulfide from strongly acidic wastewater, Environ. Sci. Technol. 51 (21) (2017) 12583-12591. [15] L. Guo, Y.G. Du, Q.S. Yi, D.S. Li, L.W. Cao, D.Y. Du, Efficient removal of arsenic from “dirty acid” wastewater by using a novel immersed multi-start distributor for sulphide feeding, Sep. Purif. Technol. 142 (2015) 209-214. [16] B. Hu, T.Z. Yang, W.F. Liu, D.C. Zhang, L. Chen, Removal of arsenic from acid wastewater via sulfide precipitation and its hydrothermal mineralization stabilization, Trans. Nonferrous Met. Soc. China 29 (11) (2019) 2411-2421. [17] P. Ostermeyer, L. Bonin, K. Folens, F. Verbruggen, C. García-Timermans, K. Verbeken, K. Rabaey, T. Hennebel, Effect of speciation and composition on the kinetics and precipitation of arsenic sulfide from industrial metallurgical wastewater, J. Hazard. Mater. 409 (2021) 124418. [18] L.H. Kong, X.Y. Hu, X.J. Peng, X.L. Wang, Specific H2S release from thiosulfate promoted by UV irradiation for removal of arsenic and heavy metals from strongly acidic wastewater, Environ. Sci. Technol. 54 (21) (2020) 14076-14084. [19] J. Liu, L. Zhou, F.Q. Dong, K.A. Hudson-Edwards, Enhancing As(V) adsorption and passivation using biologically formed nano-sized FeS coatings on limestone: Implications for acid mine drainage treatment and neutralization, Chemosphere 168 (2017) 529-538. [20] X.J. Xie, Y.Q. Liu, K.F. Pi, C.X. Liu, J.X. Li, M.Y. Duan, Y.X. Wang, In situ Fe-sulfide coating for arsenic removal under reducing conditions, J. Hydrol. 534 (2016) 42-49. [21] G.M. Jiang, B. Peng, L.Y. Chai, Q.W. Wang, M.Q. Shi, Y.Y. Wang, H. Liu, Cascade sulfidation and separation of copper and arsenic from acidic wastewater via gas-liquid reaction, Trans. Nonferrous Met. Soc. China 27 (4) (2017) 925-931. [22] L.H. Kong, X.J. Peng, X.Y. Hu, J.Y. Chen, Z.L. Xia, UV-light-induced aggregation of arsenic and metal sulfide particles in acidic wastewater: The role of free radicals, Environ. Sci. Technol. 52 (18) (2018) 10719-10727. [23] X.F. Zhang, J. Tian, Y.H. Hu, H.S. Han, X.P. Luo, W. Sun, T. Yue, L. Wang, X.F. Cao, H.P. Zhou, Selective sulfide precipitation of copper ions from arsenic wastewater using monoclinic pyrrhotite, Sci. Total Environ. 705 (2020) 135816. [24] F. Zhu, X.Y. Hu, L.H. Kong, X.J. Peng, Calcium sulfide-organosilicon complex for sustained release of H2S in strongly acidic wastewater: Synthesis, mechanism and efficiency, J. Hazard. Mater. 421 (2022) 126745. [25] X.J. Peng, J.Y. Chen, L.H. Kong, X.Y. Hu, Removal of arsenic from strongly acidic wastewater using phosphorus pentasulfide As precipitant: UV-light promoted sulfuration reaction and particle aggregation, Environ. Sci. Technol. 52 (8) (2018) 4794-4801. [26] T.Q. Liao, Y.H. Xi, L.B. Zhang, J. Li, K.H. Cui, Removal of toxic arsenic (As(III)) from industrial wastewater by ultrasonic enhanced zero-valent lead combined with CuSO4, J. Hazard. Mater. 408 (2021) 124464. [27] G.H. Xia, M. Lu, X.L. Su, X.D. Zhao, Iron removal from Kaolin using thiourea assisted by ultrasonic wave, Ultrason. Sonochem. 19 (1) (2012) 38-42. [28] S. Balakrishnan, V.M. Reddy, R. Nagarajan, Ultrasonic coal washing to leach alkali elements from coals, Ultrason. Sonochem. 27 (2015) 235-240. [29] L. Zhang, C.S. Zhou, B. Wang, A.A. Yagoub, H.L. Ma, X. Zhang, M. Wu, Study of ultrasonic cavitation during extraction of the peanut oil at varying frequencies, Ultrason. Sonochem. 37 (2017) 106-113. [30] Q.H. Gui, S.X. Wang, L.B. Zhang, The mechanism of ultrasound oxidation effect on the pyrite for refractory gold ore pretreatment, Arab. J. Chem. 14 (4) (2021) 103045. [31] E.A. Rochette, B.C. Bostick, G.C. Li, S. Fendorf, Kinetics of arsenate reduction by dissolved sulfide, Environ. Sci. Technol. 34 (22) (2000) 4714-4720. [32] C. Sun, J.B. Sun, S.B. Liu, Y. Wang, Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2-H2O-O2-H2S-SO2 environment as relevant to CCS application, Corros. Sci. 137 (2018) 151-162. [33] K.X. Liao, F.L. Zhou, X.Q. Song, Y.R. Wang, S. Zhao, J.J. Liang, L. Chen, G.X. He, Synergistic effect of O2 and H2S on the corrosion behavior of N80 steel in a simulated high-pressure flue gas injection system, J. Mater. Eng. Perform. 29 (1) (2020) 155-166. [34] G. Mark, A. Tauber, R. Laupert, H.P. Schuchmann, D. Schulz, A. Mues, C.V. Sonntag, OH-radical formation by ultrasound in aqueous solution-Part II: Terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield, Ultrason. Sonochem. 5 (2) 1998 41-52. [35] R.A. Perry, R. Atkinson, J.N. Pitts, Rate constants for the reactions OH+H2S→H2O+SH and OH+NH3 →H2O+NH2 over the temperature range 297-427 K, J. Chem. Phys. 64 (8) (1976) 3237-3239. [36] T.N. Das, R.E. Huie, P. Neta, S. Padmaja, Reduction potential of the sulfhydryl radical: Pulse radiolysis and laser flash photolysis studies of the formation and reactions of ·SH and HSSH·- in aqueous solutions, J. Phys. Chem. A 103 (27) (1999) 5221-5226. [37] G. Mills, K.H. Schmidt, M.S. Matheson, D. Meisel, Thermal and photochemical reactions of sulfhydryl radicals. Implications for colloid photocorrosion, J. Phys. Chem. 91 (6) (1987) 1590-1596. [38] G.R. Helz, J.A. Tossell, Thermodynamic model for arsenic speciation in sulfidic waters: A novel use of ab initio computations, Geochim. Cosmochim. Acta 72 (18) (2008) 4457-4468. [39] B. Planer-Friedrich, J. London, R.B. McCleskey, D.K. Nordstrom, D. Wallschläger, Thioarsenates in geothermal waters of Yellowstone National Park: Determination, preservation, and geochemical importance, Environ. Sci. Technol. 41 (15) (2007) 5245-5251. [40] A.E. Lewis, Review of metal sulphide precipitation, Hydrometallurgy 104 (2) (2010) 222-234. [41] S. Singhania, Q.K. Wang, D. Filippou, G.P. Demopoulos, Acidity, valency and third-ion effects on the precipitation of scorodite from mixed sulfate solutions under atmospheric-pressure conditions, Metall. Mater. Trans. B 37 (2) (2006) 189-197. [42] M. Fantauzzi, D. Atzei, B. Elsener, P. Lattanzi, A. Rossi, XPS and XAES analysis of copper, arsenic and sulfur chemical state in enargites, Surf. Interface Anal. 38 (5) (2006) 922-930. [43] E.J. Kim, B. Batchelor, Macroscopic and X-ray photoelectron spectroscopic investigation of interactions of arsenic with synthesized pyrite, Environ. Sci. Technol. 43 (8) (2009) 2899-2904. [44] M.F. Lengke, R.N. Tempel, Kinetic rates of amorphous As2S3 oxidation at 25 to 40 ℃ and initial pH of 7.3 to 9.4, Geochim. Cosmochim. Acta 65 (14) (2001) 2241-2255. [45] Y.F. Cai, Y.G. Pan, J.Y. Xue, Q.F. Sun, G.Z. Su, X. Li, Comparative XPS study between experimentally and naturally weathered pyrites, Appl. Surf. Sci. 255 (21) (2009) 8750-8760. |